Câu hỏi:
22/02/2023 1,491Có bao nhiêu giá trị nguyên của m để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Đặt \(t = {2^x}\), đưa về phương trình bậc hai ẩn t. Tìm điều kiện để phương trình bậc hai ẩn t có 2 nghiệm dương phân biệt.
Cách giải:
\({2^{2x + 1}} - {2^{x + 3}} - 2m = 0 \Leftrightarrow {2.2^{2x}} - {8.2^x} - 2m \Leftrightarrow {2^{2x}} - {4.2^x} - m = 0\)
Đặt \(t = {2^x}\,\left( {t > 0} \right)\), khi đó phương trình trở thành \({t^2} - 4t - m = 0\,\,\left( * \right)\)
Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) phải có 2 nghiệm dương phân biệt \( \Rightarrow \left\{ \begin{array}{l}\Delta ' > 0\\S > 0\\P > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4 + m > 0\\4 > 0\\ - m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > - 4\\m < 0\end{array} \right. \Leftrightarrow - 4 < m < 0\)
\(m \in Z \Rightarrow m \in \left\{ { - 3; - 2; - 1} \right\}\)
Vậy có 3 giá trị của m thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình \({\log _4}\left( {x + 2} \right) = {\log _2}x\) có bao nhiêu nghiệm?
Câu 2:
Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)
Câu 3:
Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)
Câu 4:
Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)
Câu 5:
Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.
Câu 6:
Cho bảng biến của hàm số \(y = f\left( x \right)\) như sau:
Đồ thị của hàm số đã cho có tổng số bao nhiêu đường tiệm cận đứng và ngang?
về câu hỏi!