Câu hỏi:

22/02/2023 2,365

Có bao nhiêu giá trị nguyên của m để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Đặt \(t = {2^x}\), đưa về phương trình bậc hai ẩn t. Tìm điều kiện để phương trình bậc hai ẩn t có 2 nghiệm dương phân biệt.

Cách giải:

\({2^{2x + 1}} - {2^{x + 3}} - 2m = 0 \Leftrightarrow {2.2^{2x}} - {8.2^x} - 2m \Leftrightarrow {2^{2x}} - {4.2^x} - m = 0\)

Đặt \(t = {2^x}\,\left( {t > 0} \right)\), khi đó phương trình trở thành \({t^2} - 4t - m = 0\,\,\left( * \right)\)

Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) phải có 2 nghiệm dương phân biệt \( \Rightarrow \left\{ \begin{array}{l}\Delta ' > 0\\S > 0\\P > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4 + m > 0\\4 > 0\\ - m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > - 4\\m < 0\end{array} \right. \Leftrightarrow - 4 < m < 0\)

\(m \in Z \Rightarrow m \in \left\{ { - 3; - 2; - 1} \right\}\)

Vậy có 3 giá trị của m thỏa mãn yêu cầu bài toán.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)

Xem đáp án » 22/02/2023 4,555

Câu 2:

Phương trình \({\log _4}\left( {x + 2} \right) = {\log _2}x\) có bao nhiêu nghiệm?

Xem đáp án » 22/02/2023 3,716

Câu 3:

Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)

Xem đáp án » 22/02/2023 3,563

Câu 4:

Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)

Xem đáp án » 22/02/2023 1,785

Câu 5:

Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.

Xem đáp án » 22/02/2023 1,205

Câu 6:

Cho bảng biến của hàm số \(y = f\left( x \right)\) như sau:

Cho bảng biến của hàm số y = f(x) như sau: Đồ thị của hàm số đã cho có tổng số bao nhiêu (ảnh 1)

Đồ thị của hàm số đã cho có tổng số bao nhiêu đường tiệm cận đứng và ngang?

Xem đáp án » 22/02/2023 1,049