Câu hỏi:
22/02/2023 2,166Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
+) Gọi hai điểm A, B thuộc đồ thị hàm số, lưu ý điều kiện nằm ở hai nhánh khác nhau.
+) Tính AB, sử dụng BĐT Cauchy để tìm GTNN của AB.
Cách giải:
TXĐ: \(D = R\backslash \left\{ { - 1} \right\}\)
Ta có: \(y = \frac{{2x - 1}}{{x + 1}} = 2 - \frac{3}{{x + 1}}\)
Đồ thị hàm số có TCĐ \(x = - 1\), gồm hai nhánh nằm về hai phía đường thẳng \(x = - 1\).
Gọi A là điểm thuộc nhánh trái của đồ thị hàm số \( \Rightarrow {x_A} < - 1 \Rightarrow - 1 - {x_A} > 0\)
Đặt \(a = - 1 - {x_A} > 0 \Rightarrow {x_A} = - 1 - a \Rightarrow A\left( { - 1 - a;2 + \frac{3}{a}} \right)\)
Gọi B là điểm thuộc nhánh phải của đồ thị hàm số \( \Rightarrow {x_B} > - 1 \Rightarrow {x_B} + 1 > 0\)
Đặt \(b = 1 + {x_B} > 0 \Rightarrow {x_B} = - 1 + b \Rightarrow B\left( { - 1 + b;2 - \frac{3}{b}} \right)\)
\( \Rightarrow A{B^2} = {\left( {a + b} \right)^2} + {\left( {\frac{3}{b} + \frac{3}{a}} \right)^2} = {\left( {a + b} \right)^2} + \frac{{9{{\left( {a + b} \right)}^2}}}{{{a^2}{b^2}}} = {\left( {a + b} \right)^2}\left( {1 + \frac{9}{{{a^2}{b^2}}}} \right) = \left( {{a^2} + {b^2} + 2ab} \right)\left( {1 + \frac{9}{{{a^2}{b^2}}}} \right)\) Áp dụng BĐT Cauchy ta có \(A{B^2} \ge \left( {2ab + 2ab} \right).2\sqrt {\frac{9}{{{a^2}{b^2}}}} = 4ab.2.\frac{3}{{ab}} = 24 \Rightarrow AB \ge 2\sqrt 6 \)
Dấu bằng xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}a = b > 0\\1 = \frac{3}{{ab}}\end{array} \right. \Leftrightarrow a = b = \sqrt 3 \)
Vậy \(A{B_{\min }} = 2\sqrt 6 \)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình \({\log _4}\left( {x + 2} \right) = {\log _2}x\) có bao nhiêu nghiệm?
Câu 2:
Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)
Câu 3:
Có bao nhiêu giá trị nguyên của m để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt?
Câu 4:
Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)
Câu 5:
Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.
Câu 6:
Cho bảng biến của hàm số \(y = f\left( x \right)\) như sau:
Đồ thị của hàm số đã cho có tổng số bao nhiêu đường tiệm cận đứng và ngang?
về câu hỏi!