Câu hỏi:
12/07/2024 777Giả sử độ dài hai cạnh của một hình chữ nhật được biểu thị bởi M = x + 3y + 2 và N = x + y. Khi đó, diện tích của hình chữ nhật được biểu thị bởi
MN = (x + 3y + 2)(x + y).
Trong tình huống này, ta phải nhân hai đa thức M và N. Phép nhân đó được thực hiện như thế nào và kết quả có phải là một đa thức hay không?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Sau bài học này ta giải quyết được bài toán như sau:
Ta thực hiện phép nhân đa thức M và N, ta nhân mỗi hạng tử của đa thức M với từng hạng tử của đa thức N rồi cộng các kết quả với nhau.
Ta thực hiện như sau:
MN = (x + 3y + 2)(x + y)
= x . x + 3y . x + 2 . x + x . y + 3y . y + 2 . y
= x2 + 3xy + 2x + xy + 3y2 + 2y
= x2 + 4xy + 2x + 3y2 + 2y.
Kết quả của phép nhân hai đa thức M và N là một đa thức.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Chứng minh đẳng thức sau: (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).
Câu 3:
Tìm tích của đơn thức với đa thức:
a) (−0,5)xy2 (2xy – x2 + 4y);
Câu 4:
Rút gọn biểu thức sau để thấy rằng giá trị của nó không phụ thuộc vào giá trị của biến: (x – 5)(2x + 3) – 2x(x – 3) + x + 7.
Câu 7:
Xét biểu thức đại số với hai biến k và m sau:
P = (2k – 3)(3m – 2) – (3k – 2)(2m – 3).
a) Rút gọn biểu thức P.
về câu hỏi!