Giải SGK Toán 8 KNTT Bài 4. Phép nhân đa thức có đáp án

32 người thi tuần này 4.6 1.2 K lượt thi 25 câu hỏi

🔥 Đề thi HOT:

1884 người thi tuần này

Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)

13.3 K lượt thi 19 câu hỏi
857 người thi tuần này

15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án

4.6 K lượt thi 15 câu hỏi
754 người thi tuần này

Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)

3.2 K lượt thi 18 câu hỏi
593 người thi tuần này

Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án

4.8 K lượt thi 13 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Giả sử độ dài hai cạnh của một hình chữ nhật được biểu thị bởi M = x + 3y + 2 và N = x + y. Khi đó, diện tích của hình chữ nhật được biểu thị bởi

MN = (x + 3y + 2)(x + y).

Trong tình huống này, ta phải nhân hai đa thức M và N. Phép nhân đó được thực hiện như thế nào và kết quả có phải là một đa thức hay không?

Lời giải

Sau bài học này ta giải quyết được bài toán như sau:

Ta thực hiện phép nhân đa thức M và N, ta nhân mỗi hạng tử của đa thức M với từng hạng tử của đa thức N rồi cộng các kết quả với nhau.

Ta thực hiện như sau:

MN = (x + 3y + 2)(x + y)

= x . x + 3y . x + 2 . x + x . y + 3y . y + 2 . y

= x2 + 3xy + 2x + xy + 3y2 + 2y

= x2 + 4xy + 2x + 3y2 + 2y.

Kết quả của phép nhân hai đa thức M và N là một đa thức.

Câu 2

Nhân hai đơn thức:

a) 3x2 và 2x3;

Lời giải

a) 3x2 . 2x3 = (3. 2)(x2 . x3) = 6x5;

Câu 3

b) –xy và 4z3;

Lời giải

b) –xy . 4z3 = –4xyz3;

Câu 4

c) 6xy3 và –0,5x2.

Lời giải

c) 6xy3 . (–0,5x2) = [6 . (–0,5)] (x . x2) y3 = –3x3y3.

Câu 5

Hãy nhớ lại quy tắc nhân đơn thức với đa thức trong trường hợp chúng có một biến bằng cách thực hiện phép nhân (5x2) . (3x2 – x – 4).

Lời giải

Ta có (5x2) . (3x2 – x – 4) = 5x2 . 3x2 – 5x2 . x – 5x2 . 4

= 15x4 – 5x3 – 20x2.

Câu 6

Bằng cách tương tự, hãy làm phép nhân (5x2y) . (3x2y – xy – 4y).

Lời giải

Ta có (5x2y) . (3x2y – xy – 4y) = 5x2y . 3x2y – 5x2y . xy – 5x2y . 4y

= 5x2y . 3x2y – 5x2y . xy – 5x2y . 4y

Câu 7

Làm tính nhân:

a) (xy) . (x2 + xy – y2);

Lời giải

a) (xy) . (x2 + xy – y2) = xy . x2 + xy . xy – xy . y2

= x3y + x2y2 – xy3.

Câu 8

b) (xy + yz + zx) . (–xyz).

Lời giải

b) (xy + yz + zx) . (–xyz) = xy . (–xyz) + yz . (–xyz) + zx . (–xyz)

= –x2y2z – xy2z2 – x2yz2.

Câu 9

Rút gọn biểu thức: x3(x + y) – x(x3 + y3).

Lời giải

Ta có x3(x + y) – x(x3 + y3) = x3 . x + x3 . y – x3 . x – x . y3

= x4 + x3y – x4 – xy3 = x3y – xy3.

Câu 10

Hãy nhớ lại quy tắc nhân hai đa thức một biến bằng cách thực hiện phép nhân:

(2x + 3) . (x2 – 5x + 4).

Lời giải

Ta có (2x + 3) . (x2 – 5x + 4)

= 2x . x2 – 2x . 5x + 2x . 4 + 3 . x2 – 3 . 5x + 3 . 4

= 2x3 – 10x2 + 8x + 3x2 – 15x + 12

= 2x3 + (3x2 – 10x2) + (8x – 15x) + 12

= 2x3 – 7x2 – 7x + 12.

Câu 11

Bằng cách tương tự, hãy thử làm phép nhân (2x + 3y) . (x2 – 5xy + 4y2).

Lời giải

Ta có (2x + 3y) . (x2 – 5xy + 4y2)

= 2x . x2 – 2x . 5xy + 2x . 4y2 + 3y . x2 – 3y . 5xy + 3y . 4y2

= 2x3 – 10x2y + 8xy2 + 3x2y – 15xy2 + 12y3

= (2x3 + 12y3) + (3x2y – 10x2y) + (8xy2 – 15xy2)

= 14y3 – 7x2y – 7xy2.

Câu 12

Thực hiện phép nhân:

a) (2x + y)(4x2 – 2xy + y2);

Lời giải

a) (2x + y)(4x2 – 2xy + y2)

= 2x . 4x2 – 2x . 2xy + 2x . y2 + y . 4x2 – y . 2xy + y . y2

= 8x3 – 4x2y + 2xy2 + 4x2y – 2xy2 + y3

= 8x3 + (4x2y – 4x2y) + (2xy2 – 2xy2) + y3

= 8x3 + y3.

Câu 13

b) (x2y2 – 3)(3 + x2y2).

Lời giải

b) (x2y2 – 3)(3 + x2y2) = x2y2 . 3 + x2y2 . x2y2 – 3 . 3 – 3 . x2y2

= 3x2y2 + x4y4 – 9 – 3x2y2 = x4y4 – 9.

Câu 14

Xét biểu thức đại số với hai biến k và m sau:

P = (2k – 3)(3m – 2) – (3k – 2)(2m – 3).

a) Rút gọn biểu thức P.

Lời giải

a) P = (2k – 3)(3m – 2) – (3k – 2)(2m – 3)

= (6km – 9m – 4k + 6) – (6km – 4m – 9k + 6)

= 6km – 9m – 4k + 6 – 6km + 4m + 9k – 6

= (6km – 6km) + (4m – 9m) + (9k – 4k) + (6 – 6) = 5k – 5m.

Câu 15

b) Chứng minh rằng tại mọi giá trị nguyên của k và m, giá trị của biểu thức P luôn là một số nguyên chia hết cho 5.

Lời giải

b) Ta thấy P = 5k – 5m = 5(k – m)

Vì 5 5 nên 5(k – m) 5

Do đó, tại mọi giá trị nguyên của k và m, giá trị của biểu thức P luôn là một số nguyên chia hết cho 5.

Câu 16

Nhân hai đơn thức:

a) 5x2y và 2xy2;

Lời giải

a) 5x2y . 2xy2 = (5. 2)(x2 . x)(y . y2);

Câu 17

b) 34xy và 8x3y3;

Lời giải

b) 34xy  .  8x3y3=34  .  8x  .  x3y  .  y3=6x4y4;

Câu 18

c) 1,5xy2z3 và 2x3y2z.

Lời giải

c) 1,5xy2z3 . 2x3y2z = (1,5 . 2)(x . x3)(y2 . y2)(z . z3) = 3x4y4z4.

Câu 19

Tìm tích của đơn thức với đa thức:

a) (−0,5)xy2 (2xy – x2 + 4y);

Lời giải

a) (−0,5)xy2 (2xy – x2 + 4y) = (−0,5)xy2 . 2xy + 0,5xy2 . x2 − 0,5xy2 . 4y

= −x2y3 + 0,5x3y2 − 2xy3;

Câu 20

b) x3y12x2+13xy6xy3.

Lời giải

b) x3y12x2+13xy6xy3

=x3y  .  6xy312x2  .  6xy3+13xy  .  6xy3

=6x4y43x3y3+2x2y4.

Câu 21

Rút gọn biểu thức: x(x2 – y) – x2(x + y) + xy(x – 1).

Lời giải

Ta có x(x2 – y) – x2(x + y) + xy(x – 1)

= x . x2 – x . y – x2 . x – x2 . y + xy . x – xy . 1

= x3 – xy – x3 – x2y + x2y – xy

= (x3 – x3) + (x2y – x2y) – (xy + xy) = –2xy.

Câu 22

Làm tính nhân:

a) (x2 – xy + 1)(xy + 3);

Lời giải

a) (x2 – xy + 1)(xy + 3)

= x2 . xy – xy . xy + 1 . xy + x2 . 3 – xy . 3 + 1 . 3

= x3y – x2y2 + xy + 3x2 – 3xy + 3

= x3y – x2y2 + (xy – 3xy) + 3x2 + 3

= x3y – x2y2 – 2xy + 3x2 + 3.

Câu 23

b) x2y212xy+2x2y.

Lời giải

b) x2y212xy+2x2y

=x2y2  .  x12xy  .  x+2  .  xx2y2  .  2y+12xy  .  2y2  .  2y

=x3y212x2y+2x2x2y3+xy24y

Câu 24

Rút gọn biểu thức sau để thấy rằng giá trị của nó không phụ thuộc vào giá trị của biến: (x – 5)(2x + 3) – 2x(x – 3) + x + 7.

Lời giải

Ta có (x – 5)(2x + 3) – 2x(x – 3) + x + 7

= x . 2x – 5 . 3 – 2x . x + 2x . 3 + x + 7

= 2x2 – 15 – 2x2 + 6x + x + 7

= (2x2 – 2x2) + (6x + x) + (7 – 15) = 7x – 7.

Câu 25

Chứng minh đẳng thức sau: (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).

Lời giải

Ta có:

• (2x + y)(2x2 + xy – y2)

= 2x . 2x2 + 2x . xy – 2x . y2 + y . 2x2 + y . xy – y . y2

= 4x3 + 2x2y – 2xy2 + 2x2y + xy2 – y3

= 4x3 + (2x2y + 2x2y) + (xy2 – 2xy2) – y3

= 4x3 + 4x2y – xy2 – y3.

• (2x – y)(2x2 + 3xy + y2)

= 2x . 2x2 + 2x . 3xy + 2x . y2 – y . 2x2 – y . 3xy – y . y2

= 4x3 + 6x2y + 2xy2 – 2x2y – 3xy2 – y3

= 4x3 + (6x2y – 2x2y) + (2xy2 – 3xy2) – y3

= 4x3 + 4x2y – xy2 – y3.

Do đó (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2) = 4x3 + 4x2y – xy2 – y3.

Vậy (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).

4.6

231 Đánh giá

50%

40%

0%

0%

0%