Câu hỏi:
12/07/2024 1,187Chứng minh đẳng thức (10a + 5)2 = 100a(a + 1) + 25. Từ đó em hãy nêu một quy tắc tính nhẩm bình phương của một số có tận cùng là 5.
Áp dụng: Tính 252; 352.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có (10a + 5)2 = (10a)2 + 2 . 10a . 5 + 52
= 100a2 + 100a + 25 = 100a(a + 1) + 25.
Từ đó ta rút ra quy tắc tính nhẩm bình phương của một số có tận cùng là 5 là:
Bình phương của một số tự nhiên có chữ số tận cùng là 5 bằng 100 lần tích của số tạo bởi các chữ số trước số tận cùng với số liền sau của số tạo bởi các chữ số tận cùng rồi cộng với 25.
Áp dụng:
• 252 = 100 . 2 . (2 + 1) + 25 = 100 . 2 . 3 + 25
= 600 + 25 = 625;
• 352 = 100 . 3 . (3 + 1) + 25 = 100 . 3 . 4 + 25
= 1 200 + 25 = 1 225.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Bác Tùng gửi vào ngân hàng 200 triệu đồng theo thể thức lãi kép theo định kì với lãi suất không đổi x mỗi năm (tức là nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp). Biểu thức S = 200(1 + x)3 (triệu đồng) là số tiền bác Tùng nhận được sau 3 năm.
a) Tính số tiền bác Tùng nhận được sau 3 năm khi lãi suất x = 5,5%.
Câu 3:
Rút gọn các biểu thức:
a) (x – 2)3 + (x + 2)3 – 6x(x + 2)(x – 2);
Câu 5:
Chứng minh rằng a3 + b3 = (a + b)3 – 3ab(a + b).
Áp dụng, tính a3 + b3 biết a + b = 4 và ab = 3.
Câu 7:
b) Khai triển S thành đa thức theo x và xác định bậc của đa thức.
về câu hỏi!