Câu hỏi:
13/07/2024 552Cho góc (hình học) xOz, tia Oy nằm trong góc xOz (Hình 8). Nêu mối liên hệ giữa số đo của góc xOz và tổng số đo của hai góc xOy và yOz.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Do tia Oy nằm trong góc xOz nên \(\widehat {xOz} = \widehat {xOy} + \widehat {yOz}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính các giá trị lượng giác (nếu có) của mỗi góc sau:
\(\frac{\pi }{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\);
Câu 2:
Tính các giá trị lượng giác của mỗi góc sau: 225°; ‒225°; ‒1 035°; \(\frac{{5\pi }}{3};\frac{{19\pi }}{2}; - \frac{{159\pi }}{4}\).
Câu 3:
Xác định vị trí các điểm M, N, P trên đường tròn lượng giác sao cho số đo của các góc lượng giác (OA, OM), (OA, ON), (OA, OP) lần lượt bằng \(\frac{\pi }{2};\frac{{7\pi }}{6}; - \frac{\pi }{6}\).
Câu 4:
Tính các giá trị lượng giác (nếu có) của mỗi góc sau:
\(\frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\);
Câu 5:
Tính các giá trị lượng giác của góc alpha trong mỗi trường hợp sau:
\(\sin \alpha = \frac{{\sqrt {15} }}{4}\) với \(\frac{\pi }{2} < \alpha < \pi \)
Câu 6:
Cho góc lượng giác (Ou, Ov) có số đo là \( - \frac{{11\pi }}{4}\), góc lượng giác (Ou, Ow) có số đo là \(\frac{{3\pi }}{4}.\) Tìm số đo của góc lượng giác (Ov, Ow).
Câu 7:
Cho góc lượng giác α sao cho \(\pi < \alpha < \frac{{3\pi }}{2}\) và \(\sin \alpha = - \frac{4}{5}\). Tìm cosα.
về câu hỏi!