Câu hỏi:
13/07/2024 2,284Quảng cáo
Trả lời:

Lấy điểm M trên đường tròn lượng giác sao cho (OA, OM) = \(\alpha = \frac{\pi }{4} = 45^\circ \) (hình vẽ).
Gọi H, K lần lượt là hình chiếu của điểm M trên các trục Ox, Oy.
Khi đó, ta có: \(\widehat {AOM} = {\rm{45}}^\circ \).
Theo hệ thức trong tam giác vuông HOM, ta có:
\({x_M} = OH = OM.cos\widehat {HOM} = 1.c{\rm{os45}}^\circ = \frac{{\sqrt 2 }}{2}\);
\({y_M} = OK = MH = OM.\sin \widehat {HOM} = 1.\sin {\rm{45}}^\circ = \frac{{\sqrt 2 }}{2}\).
Do đó \(M\left( {\frac{{\sqrt 2 }}{2};\frac{{\sqrt 2 }}{2}} \right)\).
Vậy \[\sin 45^\circ = \frac{{\sqrt 2 }}{2};cos45^\circ = \frac{{\sqrt 2 }}{2};\]\(\tan 45^\circ = 1;\cot 45^\circ = 1\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Các giá trị lượng giác của góc lượng giác \(\frac{\pi }{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\):
• \(cos\left( {\frac{\pi }{3} + k2\pi \,} \right) = cos\frac{\pi }{3} = \frac{1}{2}\);
• \(\sin \left( {\frac{\pi }{3} + k2\pi \,} \right) = \sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\);
• \(\tan \left( {\frac{\pi }{3} + k2\pi \,} \right) = \tan \frac{\pi }{3} = \sqrt 3 \);
• \(\cot \left( {\frac{\pi }{3} + k2\pi \,} \right) = \cot \frac{\pi }{3} = \frac{{\sqrt 3 }}{3}\).
Lời giải
• Ta có \(\left( {OA,OM} \right) = \alpha = \frac{\pi }{2}\) là góc lượng giác có tia đầu là tia OA, tia cuối là tia OM và quay theo chiều dương một góc \(\frac{\pi }{2}\), khi đó tia OM trùng với tia OB.
Điểm M trên đường tròn lượng giác sao cho \(\left( {OA,OM} \right) = \alpha = \frac{\pi }{2}\) được biểu diễn trùng với điểm B.
• Ta có \[\left( {OA,ON} \right) = \beta = \frac{{7\pi }}{6} = \pi + \frac{\pi }{6}\] là góc lượng giác có tia đầu là tia OA, tia cuối là tia ON và quay theo chiều dương một góc \[\frac{{7\pi }}{6}\].
• Ta có \[\left( {OA,OP} \right) = \gamma = - \frac{\pi }{6}\] là góc lượng giác có tia đầu là tia OA, tia cuối là tia OP và quay theo chiều âm một góc \[\frac{\pi }{6}\].
Ba điểm M, N, P trên đường tròn lượng giác được biểu diễn như hình vẽ dưới đây:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.