Câu hỏi:
13/07/2024 4,529Tính các giá trị lượng giác (nếu có) của mỗi góc sau:
kπ (k ∈ ℤ);
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Các giá trị lượng giác của góc lượng giác kπ (k ∈ ℤ):
‒ Nếu k là số chẵn, tức k = 2n (n ∈ ℤ) thì kπ = 2nπ, ta có:
• cos(kπ) = cos(2nπ) = cos0 = 1;
• sin(kπ) = sin(2nπ) = sin0 = 0;
• tan(kπ) = tan(2nπ) = tan0 = 0;
• Do sin(kπ) = 0 nên cot(kπ) không xác định.
‒ Nếu k là số lẻ, tức k = 2n + 1 (n ∈ ℤ) thì kπ = (2n + 1)π = 2nπ + π, ta có:
• cos(kπ) = cos(2nπ + π) = cosπ = ‒1.
• sin(kπ) = sin(2nπ + π) = sinπ = 0.
• tan(kπ) = tan(2nπ + π) = tanπ = 0.
• Do sin(kπ) = 0 nên cot(kπ) không xác định.
Vậy với k ∈ ℤ thì sin(kπ) = 0; tan(kπ) = 0; cot(kπ) không xác định;
cos(kπ) = 1 khi k là số nguyên chẵn và cos(kπ) = ‒1 khi k là số nguyên lẻ.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính các giá trị lượng giác (nếu có) của mỗi góc sau:
\(\frac{\pi }{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\);
Câu 2:
Tính các giá trị lượng giác của mỗi góc sau: 225°; ‒225°; ‒1 035°; \(\frac{{5\pi }}{3};\frac{{19\pi }}{2}; - \frac{{159\pi }}{4}\).
Câu 3:
Xác định vị trí các điểm M, N, P trên đường tròn lượng giác sao cho số đo của các góc lượng giác (OA, OM), (OA, ON), (OA, OP) lần lượt bằng \(\frac{\pi }{2};\frac{{7\pi }}{6}; - \frac{\pi }{6}\).
Câu 4:
Tính các giá trị lượng giác (nếu có) của mỗi góc sau:
\(\frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\);
Câu 5:
Tính các giá trị lượng giác của góc alpha trong mỗi trường hợp sau:
\(\sin \alpha = \frac{{\sqrt {15} }}{4}\) với \(\frac{\pi }{2} < \alpha < \pi \)
Câu 6:
Cho góc lượng giác (Ou, Ov) có số đo là \( - \frac{{11\pi }}{4}\), góc lượng giác (Ou, Ow) có số đo là \(\frac{{3\pi }}{4}.\) Tìm số đo của góc lượng giác (Ov, Ow).
Câu 7:
Cho góc lượng giác α sao cho \(\pi < \alpha < \frac{{3\pi }}{2}\) và \(\sin \alpha = - \frac{4}{5}\). Tìm cosα.
về câu hỏi!