Câu hỏi:
13/07/2024 3,653Tính các giá trị lượng giác của góc alpha trong mỗi trường hợp sau:
\(cos\alpha = - \frac{2}{3}\) với \( - \pi < \alpha < 0\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do ‒π < α < 0 nên sinα < 0.
Áp dụng công thức sin2α + cos2α = 1, ta có:
\[{\sin ^2}\alpha + {\left( { - \frac{2}{3}} \right)^2} = 1\]
\[ \Rightarrow {\sin ^2}\alpha = 1 - {\left( { - \frac{2}{3}} \right)^2} = 1 - \frac{4}{9} = \frac{5}{9}\].
\( \Rightarrow \sin \alpha = - \frac{{\sqrt 5 }}{3}\) (do sinα < 0).
Ta có: \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{ - \frac{{\sqrt 5 }}{3}}}{{ - \frac{2}{3}}}\)\( = \frac{{\sqrt 5 }}{2}\);
\(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\frac{{\sqrt 5 }}{2}}} = \frac{2}{{\sqrt 5 }} = \frac{{2\sqrt 5 }}{5}\).
Vậy \(\sin \alpha = - \frac{{\sqrt 5 }}{3}\); \(\tan \alpha = \frac{{\sqrt 5 }}{2}\) và \(\cot \alpha = \frac{{2\sqrt 5 }}{5}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính các giá trị lượng giác (nếu có) của mỗi góc sau:
\(\frac{\pi }{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\);
Câu 2:
Xác định vị trí các điểm M, N, P trên đường tròn lượng giác sao cho số đo của các góc lượng giác (OA, OM), (OA, ON), (OA, OP) lần lượt bằng \(\frac{\pi }{2};\frac{{7\pi }}{6}; - \frac{\pi }{6}\).
Câu 3:
Tính các giá trị lượng giác của mỗi góc sau: 225°; ‒225°; ‒1 035°; \(\frac{{5\pi }}{3};\frac{{19\pi }}{2}; - \frac{{159\pi }}{4}\).
Câu 4:
Tính các giá trị lượng giác (nếu có) của mỗi góc sau:
\(\frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\);
Câu 5:
Tính các giá trị lượng giác của góc alpha trong mỗi trường hợp sau:
\(\sin \alpha = \frac{{\sqrt {15} }}{4}\) với \(\frac{\pi }{2} < \alpha < \pi \)
Câu 6:
Cho góc lượng giác (Ou, Ov) có số đo là \( - \frac{{11\pi }}{4}\), góc lượng giác (Ou, Ow) có số đo là \(\frac{{3\pi }}{4}.\) Tìm số đo của góc lượng giác (Ov, Ow).
Câu 7:
Cho góc lượng giác α sao cho \(\pi < \alpha < \frac{{3\pi }}{2}\) và \(\sin \alpha = - \frac{4}{5}\). Tìm cosα.
về câu hỏi!