Câu hỏi:

21/07/2023 457

Cho đa thức F = ax2y + 2xy – x – 3x2y + y – 1, trong đó x và y là hai biến, a là một số cho trước nào đó. Tìm điều kiện của a để bậc của đa thức F

a) bằng 3.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trước hết ta viết đa thức đã cho dưới dạng: F = (a – 3)x2y + 2xy – x + y – 1.

a) Nếu a ≠ 3 thì F có dạng thu gọn là (a – 3)x2y + 2xy – x + y – 1, trong đó hạng tử có bậc cao nhất là (a – 3)x2y, bậc 3. Do đó điều kiện để bậc của F bằng 3 là a ≠ 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hệ số và bậc của từng hạng tử trong mỗi đa thức đã cho được ghi trong bảng sau:

Đa thức

a) x2y – 3xy + 5x2y2 + 0,5x – 4

b)  x22xy3+y37x3y 

Hạng tử

x2y

–3xy

5x2y2

0,5x

–4

 x2

−2xy3

y3

−7x3y

Hệ số

1

−3

5

0,5

–4

2

−2

1

−7

Bậc

3

2

4

1

0

1

4

3

4

Lời giải

Thu gọn:  M=13x2y+xy2xy+12xy25xy13x2y=32xy26xy.

Tính giá trị: Tại x = 0,5 và y = 1, ta có:

M=32.0,5.126.0,5.  1=343=94.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP