Câu hỏi:

21/07/2023 531

Chứng minh đẳng thức sau:

(2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vế trái: (2x + y)(2x2 + xy – y2)

= 2x . 2x2 + 2x . xy – 2x . y2 + y . 2x2 + y . xy – y . y2

= 4x3 + 2x2y – 2xy2 + 2x2y + xy2 – y3

= 4x3 + (2x2y + 2x2y) + (xy2 – 2xy2) – y3

= 4x3 + 4x2y – xy2 – y3.

Vế phải: (2x – y)(2x2 + 3xy + y2)

= 2x . 2x2 + 2x . 3xy + 2x . y– y . 2x2 – y . 3xy – y . y2

= 4x3 + 6x2y + 2xy– 2x2y – 3xy2 – y3

= 4x3 + (6x2y – 2x2y) + (2xy– 3xy2) – y3

= 4x3 + 4x2y – xy2 – y3.

So sánh hai kết quả, ta có điều phải chứng minh.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn biểu thức sau đây để thấy rằng giá trị của nó không phụ thuộc vào giá trị của biến: (x – 5)(2x + 3) – 2x(x – 3) + x + 7.

Xem đáp án » 21/07/2023 2,352

Câu 2:

b)  34xy và 8x3y2.

Xem đáp án » 21/07/2023 1,949

Câu 3:

Tìm tích của đơn thức với đa thức:

a) (−0,5)xy(2xy – x2 + 4y).

Xem đáp án » 21/07/2023 898

Câu 4:

c) 1,5xy2z3 và 2x3y2z.

Xem đáp án » 21/07/2023 701

Câu 5:

Chứng minh rằng nếu m và n nhận các giá trị nguyên tùy ý thì biểu thức

K = (5m + 1)(5n – 2) + (5m – 2)(5n + 1) + 4

luôn có giá trị là số nguyên chia hết cho 5.

Xem đáp án » 21/07/2023 648

Câu 6:

Nhân hai đa thức:

a) 5x2y và 2xy2.

Xem đáp án » 21/07/2023 599
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua