Câu hỏi:

27/07/2023 3,275

Một hình lăng trụ đứng có đáy là một tam giác với ba cạnh bằng 3x, 4x và 5x (biết rằng đó là một tam giác vuông), chiều cao của hình lăng trụ bằng y (x > 0, y > 0). Hãy tìm đa thức với hai biến x và y biểu thị diện tích toàn phần (tổng diện tích xung quanh và diện tích hai đáy) của hình lăng trụ đó. Xác định bậc của đa thức tìm được.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Diện tích toàn phần của hình lăng trụ bằng Stp = Sxq + 2Sđ, trong đó Sxq là diện tích xung quanh, Sđ là diện tích một mặt đáy của hình trụ. Khi đó, ta có:

• Chu vi đáy của hình lăng trụ là 3x + 4x + 5x = 12x.

• Hình lăng trụ có chiều cao là y nên diện tích xung quanh của hình lăng trụ đó là:

Sxq­ = 12xy (đơn vị diện tích).

• Đáy là tam giác vuông có cạnh lớn nhất là 5x nên hai cạnh góc vuông là 3x và 4x.

Vậy diện tích của nó bằng  Sđ=123x4x=6x2 (đơn vị diện tích).

Do đó, biểu thức biểu thị diện tích toàn phần của hình lăng trụ là

 Stp=Sxq+2Sđ=12xy+12x2 (đơn vị diện tích).

Đó là một đa thức bậc hai.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt y = x2 – 1, ta đưa về phép chia đa thức cho đơn thức:

(9x3y – 6x2y2 + 12xy) : 3xy

= 9x3y : 3xy – 6x2y2 : 3xy + 12xy : 3xy

= 3x2 ‒ 2xy + 4.

Từ đó ta được thương cần tìm là:

 3x2 ‒ 2x(x2 ‒ 1) + 4 = 3x2 ‒ 2x3 + 2x + 4.

Lời giải

a) Có thể viết A = M ‒ N, trong đó:

M = (9x2 ‒ 6xy + 4y2 + 1)(3x + 2y)

= 9x2.(3x + 2y) – 6xy.(3x + 2y) + 4y2.(3x + 2y) + 1.(3x + 2y)

= 27x3 + 18x2y ‒ 18x2y ‒ 12xy2 + 12xy2 + 8y3 + 3x + 2y

= 27x3 + (18x2y ‒ 18x2y) + (‒12xy2 + 12xy2) + 8y3 + 3x + 2y

= 27x3 + 8y3 + 3x + 2y.

•  N=3x5y+89x2y4x3y:19x2y

=3x5y:19x2y+89x2y4:19x2yx3y:19x2y

= 27x3 + 8y3 ‒ 9x.

Từ đó: A = M – N

= 27x3 + 8y3 + 3x + 2y ‒ (27x3 + 8y3 ‒ 9x)

= 27x3 + 8y3 + 3x + 2y ‒ 27x3 ‒ 8y3 + 9x

= (27x3 ‒ 27x3) + (8y3 ‒ 8y3) + (3x + 9x) + 2y

= 12x + 2y.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay