Câu hỏi:
27/07/2023 2,991Câu hỏi trong đề: Giải SBT Toán 8 KNTT Bài 10: Tứ giác có đáp án !!
Quảng cáo
Trả lời:
Xét tứ giác ABCD như hình vẽ. Ta cần chứng minh AB < AD + BC + CD và các trường hợp còn lại tương tự.
Xét tam giác ABD, ta có: AB < AD + DB (bất đẳng thức trong tam giác).
Xét tam giác BCD, ta có: DB < BC + CD (bất đẳng thức trong tam giác).
Do đó AB < AD + DB < AD + BC + CD.
Vậy AB < AD + BC + CD.
Tương tự ta cũng có:
BC < AB + CD + DA; CD < AD + AB + BC; DA < AB + BC + CD.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do AB = BC nên ∆BAC cân tại B, suy ra
Xét ∆BAC có: (định lí tổng ba góc của một tam giác)
Do đó
Do CD = DA, ∆DAC cân tại D, suy ra
Xét ∆ADC có:
Do đó
Ta có:
Vậy tứ giác ABCD có
Lời giải
Xét tứ giác ABCD. Chu vi tứ giác ABCD là PABCD = AB + BC + CD + DA.
a) Trong ∆ABC có AC < AB + BC (bất đẳng thức trong tam giác)
Trong ∆ACD có AC < CD + DA (bất đẳng thức trong tam giác)
Do đó AC + AC < AB + BC + CD + DA hay 2AC < PABCD (1)
Tương tự, trong ∆ABD có BD < AD + AB
Trong ∆BCD có: BD < CD + BC
Do đó BD + BD < AD + AB + CD + BC hay 2BD < PABCD. (2)
Từ (1) và (2) suy ra 2(AC + BD) < 2PABCD, do đó AC + BD < PABCD.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.