Câu hỏi:

27/07/2023 2,544

Chứng minh rằng trong một tứ giác, độ dài mỗi cạnh bé hơn tổng độ dài ba cạnh còn lại.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Xét tứ giác ABCD như hình vẽ. Ta cần chứng minh AB < AD + BC + CD và các trường hợp còn lại tương tự.

Xét tam giác ABD, ta có: AB < AD + DB (bất đẳng thức trong tam giác).

Xét tam giác BCD, ta có: DB < BC + CD (bất đẳng thức trong tam giác).

Do đó AB < AD + DB < AD + BC + CD.

Vậy AB < AD + BC + CD.

Tương tự ta cũng có:

BC < AB + CD + DA; CD < AD + AB + BC; DA < AB + BC + CD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh tổng độ dài hai đường chéo của tứ giác:

a) Bé hơn chu vi của tứ giác;

Xem đáp án » 27/07/2023 3,184

Câu 2:

Cho tứ giác ABCD với AB = BC, CD = DA, B^=100°D^=120°. Tính  A^ và  C^.

Xem đáp án » 27/07/2023 2,968

Câu 3:

Tìm điểm M bên trong tứ giác ABCD sao cho tổng khoảng cách từ M đến bốn đỉnh A, B, C, D là bé nhất.

Xem đáp án » 27/07/2023 2,748

Câu 4:

a) Góc kề bù với góc tại một đỉnh của tứ giác gọi là một góc ngoài tại đỉnh đó của tứ giác. (Có hai góc ngoài tại một đỉnh của tứ giác, chúng đối đỉnh nên thường gọi tắt là góc ngoài tại đỉnh đó của tứ giác). Hãy tính tổng bốn góc ngoài tại bốn đỉnh của một tứ giác.

Xem đáp án » 27/07/2023 859

Câu 5:

b) Định nghĩa góc ngoài tại một đỉnh của tam giác một cách tương tự. Hỏi tổng các góc ngoài của một tam giác bằng bao nhiêu?

Xem đáp án » 27/07/2023 492

Câu 6:

Chứng minh rằng cả bốn góc của một tứ giác không thể đều là góc nhọn, không thể đều là góc tù.

Xem đáp án » 27/07/2023 469

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store