Câu hỏi:
27/07/2023 8,747Cho hình bình hành ABCD. Lấy các điểm E thuộc AB, F thuộc CD sao cho AE = CF; lấy các điểm G thuộc BC, H thuộc AD sao cho BG = DH. Chứng minh EGFH là một hình bình hành và các đường thẳng AC, BD, EF, GH đồng quy.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do ABCD là hình bình hành nên , AD = BC, AB = CD,
• Ta có: AD = AH + DH, BC = BG + CG
Mà BG = DH, AD = BC nên AH = CG
Xét ∆AEH và ∆CFG có:
AH = CG, (do ), AE = CF
Suy ra ∆AEH = ∆CFG (c.g.c) nên EH = FG.
Ta có: AB = AE + BE, CD = CF + DF
Mà AB = CD, AE = CF nên BE = DF
Xét ∆BEG và ∆DFH có:
BE = DF, (do ), BG = DH
Suy ra ∆BEG = ∆DFH (c.g.c) nên EG = FH.
Tứ giác EGFH có EH = FG, EG = FH nên là một hình bình hành.
• Do ABCD là hình bình hành nên khi ta gọi O là giao điểm của AC thì O là trung điểm của BD.
Vì tứ giác BEDF là hình bình hành (do EB = DF và EB // DF) nên hai đường chéo EF cắt nhau DB tại trung điểm O của BD.
Tương tự, GH đi qua trung điểm O của BD.
Vậy các đường thẳng AC, BD, EF, GH đồng quy.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD với góc A tù. Dựng bên ngoài hình bình hành đó các tam giác đều ABE và DAF. Chứng minh rằng tam giác CEF là tam giác đều (Gợi ý: Chứng minh các tam giác AEF, DCF, BEC bằng nhau).
Câu 2:
Cho tam giác ABC không vuông tại A. Dựng bên ngoài tam giác đó hai tam giác ABD, ACE vuông cân tại đỉnh A rồi dựng hình bình hành AEID.
a) Chứng minh hai tam giác ABC và DAI bằng nhau.
Câu 3:
Chứng minh rằng nếu hai góc kề của mỗi cạnh của một tứ giác đều là hai góc bù nhau thì tứ giác đó là một hình bình hành.
Câu 4:
Cho hình thang ABCD với hai đáy AB, CD. Gọi K là trung điểm của BC. Lấy điểm A', D' sao cho K là trung điểm của AA' và DD'. Hỏi tứ giác AD'A'D là hình gì? Vì sao?
Câu 6:
d) Gọi K là trung điểm của BD, chứng minh KC = KI và KC vuông góc với KI. (Gợi ý: Chứng minh hai tam giác AKI và BKC bằng nhau).
về câu hỏi!