Câu hỏi:
13/07/2024 929Câu hỏi trong đề: Giải VTH Toán 8 KNTT Bài tập cuối chương 2 có đáp án !!
Quảng cáo
Trả lời:
a) Ta không thể áp dụng ngay phương pháp đặt nhân tử chung hay nhóm các hạng tử để phân tích đa thức này thành nhân tử, mà ta cần phải tách hạng tử −3x = −2x – x và ta có
2x2 – 3x + 1 = 2x2 – 2x – x + 1 = (2x2 – 2x) – (x – 1)
= 2x(x – 1) – 1.(x – 1)
= (2x – 1)(x – 1).
b) Tương tự câu a) ta không thể áp dụng ngay phương pháp đặt nhân tử chung, phương pháp nhóm các hạng tử hay sử dụng hằng đẳng thức cho đa thức 3x2 + 4x +1, mà phải tách hạng tử 4x = 3x + x, khi đó ta có
3x2 + 4x +1 = 3x2 + 3x + x + 1 = (3x2 + 3x) + (x + 1)
= 3x(x + 1) + (x + 1)
= (3x + 1)(x + 1).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có 6x2 – 24y2 = 6(x2 – 4y2) = 6[x2 – (2y)2] = 6(x + 2y)(x – 2y).
b) Ta có 64x3 – 27y3 = (4x)3 – (3y)3 = (4x – 3y)[(4x)2 + 4x.3y + (3y)2]
= (4x – 3y)(16x2 + 12xy + 9y2).
c) Ta có x4 – 2x3 + x2 = x2(x2 – 2x + 1) = x2(x – 1)2.
d) Ta có (x – y)3 + 8y3 = (x – y)3 + (2y)3
= (x – y + 2y)[(x – y)2 – (x – y).2y + (2y)2]
= (x + y)(x2 – 2xy + y2 – 2xy + 2y2 + 4y2)
= (x + y)(x2 – 4xy + 7y2).
Lời giải
a) Ta có (2x – 5y)(2x + 5y) + (2x + 5y)2
= (2x)2 – (5y)2 + (2x)2 + 2.(2x).(5y) + (5y)2
= 4x2 – 25y2 + 4x2 + 20xy + 25y2
= 8x2 + 20xy.
b) Ta có (x + 2y)(x2 – 2xy + 4y2) + (2x – y)(4x2 + 2xy + y2)
= (x + 2y)[x2 – x.2y + (2y)2] + (2x – y)[(2x)2 + 2x.y + y2]
= (x + 2y)[x2 – x.2y + (2y)2] + (2x – y)[(2x)2 + 2x.y + y2]
= x3 + (2y)3 + (2x)3 – y3
= x3 + 8y3 + 8x3 – y3
= 9x3 + 7y3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.