Câu hỏi:

13/07/2024 929

Phân tích các đa thức sau thành nhân tử:

a) 2x2 – 3x + 1.

b) 3x2 + 4x + 1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta không thể áp dụng ngay phương pháp đặt nhân tử chung hay nhóm các hạng tử để phân tích đa thức này thành nhân tử, mà ta cần phải tách hạng tử −3x = −2x – x và ta có

2x2 – 3x + 1 = 2x2 – 2x – x + 1 = (2x2 – 2x) – (x – 1)

= 2x(x – 1) – 1.(x – 1)

= (2x – 1)(x – 1).

b) Tương tự câu a) ta không thể áp dụng ngay phương pháp đặt nhân tử chung, phương pháp nhóm các hạng tử hay sử dụng hằng đẳng thức cho đa thức 3x2 + 4x +1, mà phải tách hạng tử 4x = 3x + x, khi đó ta có

3x2 + 4x +1 = 3x2 + 3x + x + 1 = (3x2 + 3x) + (x + 1)

= 3x(x + 1) + (x + 1)

= (3x + 1)(x + 1).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có 6x2 – 24y2 = 6(x2 – 4y2) = 6[x2 – (2y)2] = 6(x + 2y)(x – 2y).

b) Ta có 64x3 – 27y3 = (4x)3 – (3y)3 = (4x – 3y)[(4x)2 + 4x.3y + (3y)2]

= (4x – 3y)(16x2 + 12xy + 9y2).

c) Ta có x4 – 2x3 + x2 = x2(x2 – 2x + 1) = x2(x – 1)2.

d) Ta có (x – y)3 + 8y3 = (x – y)3 + (2y)3

= (x – y + 2y)[(x – y)2 – (x – y).2y + (2y)2]

= (x + y)(x2 – 2xy + y2 – 2xy + 2y2 + 4y2)

= (x + y)(x2 – 4xy + 7y2).

Lời giải

a) Ta có (2x – 5y)(2x + 5y) + (2x + 5y)2

= (2x)2 – (5y)2 + (2x)2 + 2.(2x).(5y) + (5y)2

= 4x2 – 25y2 + 4x2 + 20xy + 25y2

= 8x2 + 20xy.

b) Ta có (x + 2y)(x2 – 2xy + 4y2) + (2x – y)(4x2 + 2xy + y2)

= (x + 2y)[x2 – x.2y + (2y)2] + (2x – y)[(2x)2 + 2x.y + y2]

= (x + 2y)[x2 – x.2y + (2y)2] + (2x – y)[(2x)2 + 2x.y + y2]

= x3 + (2y)3 + (2x)3 – y3

= x3 + 8y3 + 8x3 – y3

= 9x3 + 7y3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP