Câu hỏi:

25/08/2023 365

Cho hai biểu thức:

\(P = {\left( {4x + 1} \right)^3} - \left( {4x + 3} \right)\left( {16{x^2} + 3} \right)\);

\(Q = {\left( {x - 2} \right)^3} - x\left( {x + 1} \right)\left( {x - 1} \right) + 6x\left( {x - 3} \right) + 5x\).

Tìm mối quan hệ giữa hai biểu thức P, Q.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: C

\(P = {\left( {4x + 1} \right)^3} - \left( {4x + 3} \right)\left( {16{x^2} + 3} \right)\)

\( = {\left( {4x} \right)^3} + 3.{\left( {4x} \right)^2}.1 + 3.4x{.1^2} + {1^3} - \left( {64{x^3} + 12x + 48{x^2} + 9} \right)\)

\( = 64{x^3} + 48{x^2} + 12x + 1 - 64{x^3} - 12x - 48{x^2} - 9\)= – 8

\(Q = {\left( {x - 2} \right)^3} - x\left( {x + 1} \right)\left( {x - 1} \right) + 6x\left( {x - 3} \right) + 5x\)

\( = {x^3} - 3.{x^2}.2 + 3x{.2^2} - {2^3} - x\left( {{x^2} - 1} \right) + 6{x^2} - 18x + 5x\)

\( = {x^3} - 6{x^2} + 12x - 8 - {x^3} + x + 6{x^2} - 18x + 5x\)\( = - 8\)

Do đó P = Q.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với mọi a, b, c thỏa mãn a + b + c = 0 thì giá trị của biểu thức \[{a^3} + {b^3} + {c^3} - 3abc\] là

Xem đáp án » 25/08/2023 1,150

Câu 2:

Rút gọn biểu thức:\(P = 8{x^3} - 12{x^2}y + 6x{y^2} - {y^3} + 12{x^2} - 12xy + 3{y^2} + 6x - 3y + 11\), ta được

Xem đáp án » 25/08/2023 1,015

Câu 3:

Biểu thức \(4{x^2} - 4x + 1\) được viết dưới dạng hằng đẳng thức bình phương của một hiệu là

Xem đáp án » 25/08/2023 735

Câu 4:

Cho cặp số (x; y) để biểu thức\(P = {x^2} - 8x + {y^2} + 2y + 5\) có giá trị nhỏ nhất. Khi đó tổng x + 2y bằng

Xem đáp án » 25/08/2023 653

Câu 5:

Trong các khẳng định sau đây, khẳng định nào là đúng?

Xem đáp án » 25/08/2023 534

Câu 6:

Tìm x, biết: \({x^3} - 12{x^2} + 48x - 64 = 0\).

Xem đáp án » 25/08/2023 339

Bình luận


Bình luận