Câu hỏi:

25/08/2023 356 Lưu

Có bao nhiêu giá trị nguyên của x để phân thức \[\frac{{{{\rm{x}}^{\rm{3}}}{\rm{ + 2}}{{\rm{x}}^{\rm{2}}}{\rm{ + 4x + 6}}}}{{{\rm{x + 2}}}}\] có giá trị nguyên?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: D

Điều kiện: \[{\rm{x}} + 2 \ne 0\] hay \[{\rm{x}} \ne - 2\].

\[\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}} = \frac{{{x^3} + 2{x^2} + 4x + 8 - 2}}{{x + 2}}\]

\[ = \frac{{{x^2}\left( {x + 2} \right) + 4\left( {x + 2} \right) - 2}}{{x + 2}}\]

\[ = \frac{{\left( {{x^2} + 4} \right)\left( {x + 2} \right) - 2}}{{x + 2}} = {\rm{ }}{x^2} + 4 - \frac{2}{{x + 2}}\].

Ta có \[{{\rm{x}}^2} \in \mathbb{Z}\,\,\,\forall {\rm{x}} \in \mathbb{Z}\] nên để phân thức \[\frac{{{{\rm{x}}^{\rm{3}}}{\rm{ + 2}}{{\rm{x}}^{\rm{2}}}{\rm{ + 4x + 6}}}}{{{\rm{x + 2}}}}\] có giá trị nguyên thì\[\frac{2}{{{\rm{x}} + 2}} \in \mathbb{Z} \Rightarrow \left( {{\rm{x}} + 2} \right) \in \;\]Ư\[\left( 2 \right) = \left\{ { - 2;\,\, - 1;\,\,1;\,\,2} \right\}\].

Ta xét các trường hợp sau:

\[{\rm{x}} + 2 = - 2 \Leftrightarrow {\rm{x}} = - 4\,\,\,\left( {{\rm{TM}}} \right)\]

\[\,{\rm{x}} + 2 = - 1 \Leftrightarrow {\rm{x}} = - 3\,\,\,\left( {{\rm{TM}}} \right)\]

\[{\rm{x}} + 2 = 1 \Leftrightarrow {\rm{x}} = - 1\,\,\,\left( {{\rm{TM}}} \right)\]

\[{\rm{x}} + 2 = 2 \Leftrightarrow {\rm{x}} = 0\,\,\,\,\left( {{\rm{TM}}} \right)\]

Vậy có 4 giá trị nguyên của x để phân thức \[\frac{{{{\rm{x}}^{\rm{3}}}{\rm{ + 2}}{{\rm{x}}^{\rm{2}}}{\rm{ + 4x + 6}}}}{{{\rm{x + 2}}}}\] có giá trị nguyên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng là: B

Điều kiện: \[5 - 3{\rm{x}} \ne 0\] hay \[{\rm{x}} \ne \frac{5}{3}\].

Ta có \[\frac{{7{\rm{x}} + 2}}{{5 - 3{\rm{x}}}} = \frac{{11}}{7}\] nên

\[\left( {7x + 2} \right)7 = 11\left( {5 - 3x} \right)\]

\[49{\rm{x}} + 14 = 55 - 33{\rm{x}}\]

\[82{\rm{x}} = 41\]

\[{\rm{x}} = \frac{1}{2}\] (TMĐK)

Câu 2

Lời giải

Lời giải

Đáp án đúng là: D

Theo tính chất cơ bản của phân thức đại số, ta có:

\[\frac{{\rm{A}}}{{\rm{B}}}{\rm{ = }}\frac{{{\rm{A}}{\rm{.M}}}}{{{\rm{B}}{\rm{.M}}}}\]\[\frac{{\rm{A}}}{{\rm{B}}}{\rm{ = }}\frac{{{\rm{A}}{\rm{.M}}}}{{{\rm{B}}{\rm{.M}}}}\] (với M khác đa thức 0)

\[ \Rightarrow \frac{{\rm{A}}}{{\rm{B}}}{\rm{ = }}\frac{{{\rm{A}}\left( { - {\rm{1}}} \right)}}{{{\rm{B}}\left( { - {\rm{1}}} \right)}}{\rm{ = }}\frac{{ - {\rm{A}}}}{{ - {\rm{B}}}}\]

\[\frac{{\rm{A}}}{{\rm{B}}}{\rm{ = }}\frac{{{\rm{A:N}}}}{{{\rm{B:N}}}}\] (với N là một nhân tử chung, N khác đa thức 0)

Mệnh đề \[\frac{{\rm{A}}}{{\rm{B}}}{\rm{ = }}\frac{{{\rm{A + M}}}}{{{\rm{B + M}}}}\]sai. Ví dụ: \[\frac{2}{3} \ne \frac{3}{4} = \frac{{2 + 1}}{{3 + 1}}\].

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP