Câu hỏi:
13/07/2024 1,683a) Cho tanα + cotα = 2. Tính giá trị của biểu thức tan3α +cot3α.
b) Cho Tính giá trị của sinαcosα.
c) Cho Tính giá tị của biểu thức sin3α + cos3α.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) tan3α + cot3α = (tanα + cotα)3 ‒ 3tanαcotα(tanα + cotα)
= (tanα + cotα)3 ‒ 3 (tanα + cotα) (*)
Thay tanα + cotα = 2 vào biểu thức (*) ta có: 23 ‒ 3.2 = 2.
b) (sinα + cosα)2 = sin2α + cos2α + 2 sinαcosα = 1 + 2 sinαcosα.
Do đó .
c) sin3α + cos3α
= (sinα + cosα)(sin2α ‒ sinαcosα + cos2α)
= (sinα + cosα)(1 ‒ sinαcosα)
Mà , nên
.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biểu diễn các giá trị lượng giác sau qua các giá trị lượng giác của góc có số đo từ 0 đến (hoặc từ 0° đến 45°).
a) sin(‒1693°);
b)
c) tan 885°;
d)
Câu 3:
Chứng minh các đẳng thức lượng giác sau:
a) sin4x + cos4x = 1 ‒ 2sin2xcos2x.
b)
c)
d)
Câu 5:
Độ dài của ngày từ lúc Mặt Trời mọc đến lúc Mặt Trời mọc ở một thành phố X trong ngày thứ t của năm được tính xấp xỉ bởi công thức:
với t ∈ ℤ và 1 ≤ t ≤ 365.
Thành phố X vào ngày 31 tháng 1 có bao nhiêu giờ có Mặt Trời chiếu sáng? Làm tròn kết quả đến hàng phần mười.
Câu 7:
Cho Xác định dấu của các giá trị lượng giác sau:
a) cos(α + π);
về câu hỏi!