Câu hỏi:

29/10/2023 10,499

Trong Hình 9.9, ABC là tam giác không cân; M, N, P lần lượt là trung điểm của BC, CA, AB. Hãy tìm trong hình năm tam giác khác nhau mà chúng đôi một đồng dạng với nhau. Giải thích vì sao chúng đồng dạng.

Trong Hình 9.9, ABC là tam giác không cân; M, N, P lần lượt là trung điểm của BC, CA, AB. Hãy tìm trong (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

- Do N, P lần lượt là trung điểm của CA, AB.

Suy ra PN là đường trung bình của tam giác ABC nên NP // BC (P ∈ AB, N ∈ AC).

Suy ra ΔABC ∽ ΔAPN. 

- Do M, P lần lượt là trung điểm của BC, AB.

Suy ra MP là đường trung bình của tam giác ABC nên MP // AC (P ∈ AB, M ∈ BC)

Suy ra ΔABC ∽ ΔPBM.

- Do M, N lần lượt là trung điểm của BC, AC.

Suy ra MN là đường trung bình của tam giác ABC nên MN // AB (N ∈ AC, M ∈ BC).

Suy ra ΔABC ∽ ΔNMC.

- Ta có A^=BPM^ (do ΔABC ∽ ΔPBM); APN^=B^ (do PN // BC); ANP^=PMB^ (do cùng bằng góc C); APPB=ANPM=PNBM=1.

Do đó,  ΔAPN ∽ ΔPBM.

- Tương tự ta cũng có ΔNMC ∽ ΔPBM.

  1. - Ta có ΔAPN = ΔMNP (g – c – g) vì APN^=MNP^; ANP^=MPN^ (NP // BC và các cặp góc ở vị trí so le trong) và PN cạnh chung. Do đó ΔAPN ∽ ΔMNP.

Vậy ta có 5 tam giác APN, PBM, NMC, MNP, ABC đôi một đồng dạng với nhau.

Bình luận


Bình luận

Tan Chu
21:10 - 07/02/2025

Je

Tan Chu
21:10 - 07/02/2025

Cảm ơn bạn

Tan Chu
21:05 - 07/02/2025

Ok

Tan Chu
21:04 - 07/02/2025

Jebsn

Tan Chu
21:04 - 07/02/2025

C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Những khẳng định nào sau đây là đúng?

a) Hai tam giác bằng nhau thì đồng dạng với nhau.

b) Hai tam giác bất kì đồng dạng với nhau.

c) Hai tam giác đều bất kì đồng dạng với nhau.

c) Hai tam giác vuông bất kì đồng dạng với nhau.

d) Hai tam giác đồng dạng thì bằng nhau.

Xem đáp án » 29/10/2023 16,658

Câu 2:

Cho tam giác ABC cân tại đỉnh A và tam giác MNP cân tại đỉnh M. Biết rằng BAC^=PMN^,AB=2MN. Chứng minh ∆MNP ∆ABC và tìm tỉ số đồng dạng.

Xem đáp án » 29/10/2023 12,207

Câu 3:

Cho ∆ABC ∽ ∆MNP, khẳng định nào sau đây không đúng?

a) ∆MNP ∽ ∆ABC.

b) ∆BCA ∽ ∆NPM.

c) ∆CAB ∽ ∆PMN.

d) ∆ACB ∽ ∆MNP.

Xem đáp án » 29/10/2023 9,516

Câu 4:

Cho tam giác ABC và các điểm M, N lần lượt nằm trên các cạnh AB, AC sao cho MN song song với BC như Hình 9.4.

- Hãy viết các cặp góc bằng nhau của hai tam giác ABC và AMN, giải thích vì sao chúng bằng nhau.

- Kẻ đường thẳng đi qua N song song với AB và cắt BC tại P. Hãy chứng tỏ MN = BP và suy ra MNBC=ANAC=AMAB.

- Tam giác ABC và tam giác AMN có đồng dạng không? Nếu có hãy viết đúng kí hiệu đồng dạng.

Cho tam giác ABC và các điểm M, N lần lượt nằm trên các cạnh AB, AC sao cho MN song song với BC như Hình 9.4. (ảnh 1)

Xem đáp án » 29/10/2023 3,926

Câu 5:

Trong Hình 9.8, các đường thẳng AB, CD, EF song song với nhau. Hãy liệt kê ba cặp tam giác (phân biệt) đồng dạng.

Trong Hình 9.8, các đường thẳng AB, CD, EF song song với nhau. Hãy liệt kê ba cặp tam giác (phân biệt) đồng dạng. (ảnh 1)

Xem đáp án » 29/10/2023 3,459

Câu 6:

Trong các tam giác được vẽ trên ô lưới vuông (H.9.3), có một cặp tam giác đồng dạng. Hãy chỉ ra cặp tam giác đó, viết đúng kí hiệu đồng dạng và tìm tỉ số đồng dạng của chúng.

Trong các tam giác được vẽ trên ô lưới vuông (H.9.3), có một cặp tam giác đồng dạng. Hãy chỉ ra cặp tam  (ảnh 1)

Xem đáp án » 29/10/2023 3,230
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay