CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ diện đều ABCD. Chứng minh rằng AB vuông góc CD. (ảnh 1)

Gọi a là độ dài cạnh của tứ diện đều ABCD.

Gọi M, N, P lần lượt là trung điểm của các cạnh AC, BC và AD.

Xét tam giác ABC:

M là trung điểm của AC.

N là trung điểm của BC.

Nên MN là đường trung bình của tam giác ABC.

 MN // AB; MN = 12 AB = a2                                     (1)

Tương tự: MP là đường trung bình tam giác ACD:

 MP // CD; MP = 12 CD = a2                                        (2)

Từ (1) và (2) MN = MP = a2

Tam giác ABD đều có BP là trung tuyến nên BP = a32

Tam giác ACD đều có CP là trung tuyến nên CP = a32

 Xét tam giác BCP có: BP = CP = a32

 Tam giác BCP cân tại P.

Mà N là trung điểm của BC  PN là đường trung tuyến nên PN CN

PN = CP2CN2=a322a22=a22 

Xét tam giác MNP:

MP2 + MN2 = a22+a22=2a24 ; PN2a222=2a24

 MP2 + MN2 = PN2

 Tam giác MNP vuông tại M.

Ta có: (AB, CD) = (MN, MP) = NMP^=90°.

Vậy AB CD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP