Cho hình tứ diện đều ABCD có cạnh bằng . Gọi I là trung điểm của cạnh CD. Tính khoảng cách giữa hai đường thẳng AC và BI.
Quảng cáo
Trả lời:
Gọi O là trung điểm AC, J là trung điểm OD.
Vě OH ^ BJ, HE // AC, EF // OH.
Có IJ // AC nên AC // (BIJ).
Þ d(AC, BI) = d(AC, (BIJ)) = d(O, (BIJ)).
Do ABCD là tứ diện đều nên ta dễ dàng nhận ra AC ^ (OBD).
Þ AC ^ OH (OH Ì OBD).
AC // IJ, Þ OH ^ IJ.
Kết hợp giả thiết, suy ra OH ^ (BIJ) hay d(O, (BIJ)) = OH.
Xét tam giác OBD cân tại O, ta có
Áp dụng công thức Heron, ta có:
Ta tính được OH =
Vậy khoảng cách giữa hai đường thẳng AC và BI là
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi E là trung điểm của BC thì BC ^ AE (vì ∆ABC đều).
Ta có BC ^ SA và BC ^ AE Þ BC ^ (SAE).
Þ (SBC) ^ (SAE).
Trong mặt phẳng (SAE), vẽ AF ^ SE (F Î SE).
Suy ra AF ^ (SBC) hay d(A, (SBC))=AF.
Xét ∆SAE vuông tại A, ta có:
Vậy
Lời giải
B'D' Ç A'C' tại O.
Gọi P là trung điểm của OC'.
Vě OH ^ MP, HE // NP, EF // OH.
ABCD là hình lập phương, ta dễ dàng có được: B'D' ^ (A'C'CA).
Hay B'D' ^ OH, mà OH // EF
Þ EF ^ B'D' (1).
NP // B'D' Þ NP ^ (A'C'CA) hay NP ^ OH.
Đồng thời OH ^ MP.
Þ OH ^ (MNP) hay OH ^ MN Þ EF ^ MN (2)
Từ (1) và (2) ta có: d(MN, B'D') = EF = OH.
Xét tam giác vuông MOP, ta có OM = a, OP = , suy ra OH = .
Vậy d(MN, B'D') =
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.