Cho hình chóp cụt tam giác đều có đường cao . Cho biết AB = 2a, . Gọi B1, C1 lần lượt là trung điểm của AB, AC. Tính thể tích của:
a) Khối chóp cụt đều .
b) Khối lăng trụ .
Cho hình chóp cụt tam giác đều có đường cao . Cho biết AB = 2a, . Gọi B1, C1 lần lượt là trung điểm của AB, AC. Tính thể tích của:
a) Khối chóp cụt đều .
b) Khối lăng trụ .
Quảng cáo
Trả lời:
a)
Áp dụng công thức:
Do ABC, A¢B¢C¢ là các tam giác đều nên: , thay vào công thức trên ta có:
b) Áp dụng công thức: , với
Ta có:
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi E là trung điểm của BC thì BC ^ AE (vì ∆ABC đều).
Ta có BC ^ SA và BC ^ AE Þ BC ^ (SAE).
Þ (SBC) ^ (SAE).
Trong mặt phẳng (SAE), vẽ AF ^ SE (F Î SE).
Suy ra AF ^ (SBC) hay d(A, (SBC))=AF.
Xét ∆SAE vuông tại A, ta có:
Vậy
Lời giải
a) Do S.ABC là hình chóp tam giác đều nên SG ^ (ABC) hay d(S, (ABC))=SG.
Tam giác ABC là tam giác đều cạnh 3a nên
Tam giác SAG vuông tại G nên
Vậy d(S, (ABC)) = a.
b) Vì SC Ç (SAG) = S nên
Gọi I là trung điểm của BC.
Ta có: CB ^ AI và CB ^ SG
Þ CB ^ (SAG) và CB Ç (SAG) = I.
Do đó
Vậy
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.