Câu hỏi:
02/11/2023 6,179
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Gọi H là hình chiếu của điểm O trên mặt phẳng (ABC). Chứng minh rằng:
a) BC ^ (OAH).
b) H là trực tâm của ∆ABC.
c)
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Gọi H là hình chiếu của điểm O trên mặt phẳng (ABC). Chứng minh rằng:
a) BC ^ (OAH).
b) H là trực tâm của ∆ABC.
c)
Quảng cáo
Trả lời:
a) Ta có:
Từ (1) và (2) Þ BC ^ (OAH).
b) Từ a) Þ BC ^ AH. (*)
Ta dễ dàng chứng minh được OC ^ (OAB) Þ OC ^ AB. (3)
Lại có: OH ^ AB (do OH ^ (ABC)) Þ OH ^ AB. (4)
Từ (3) và (4) Þ AB ^ (OHC) hay AB ^ HC. (**)
Từ (*) và (**) Þ H là trực tâm của tam giác ABC.
c) Dễ thấy OD, OH là các đường cao của tam giác OBC và OAD.
Áp dụng hệ thức lượng trong tam giác vuông, ta có:
Do đó
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Qua A kẻ đường thẳng song song với BC, I là hình chiếu của H trên đường thẳng đó.
Ta có BC // (SAI)
Suy ra d(BC, SA) = d(BC, (SAI))
= d(B, (SAI)) =
Gọi K là hình chiếu của H trên SI.
Dễ dàng chứng minh được AI ^ (SHI) Þ AI ^ HK.
Þ HK ^ (SAI) Þ d(H, (SAI)) = HK.
Tam giác AIH vuông tại I:
Tam giác SHC vuông tại H:
Tam giác SHI vuông tại H:
Lời giải
Đáp án đúng là: A
Ta có:
Xét tam giác SBC vuông tại B có:
Xét tam giác SAB vuông tại A có:
Mà
Vậy
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.