Câu hỏi:

02/11/2023 6,179

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Gọi H là hình chiếu của điểm O trên mặt phẳng (ABC). Chứng minh rằng:

a) BC ^ (OAH).

b) H là trực tâm của ∆ABC.

c) 1OH2=1OA2+1OB2+1OC2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

a) Ta có: OAOBOAOC

OA(OBC)OABC.1

OHBCOHABC.2

Từ (1) và (2) Þ BC ^ (OAH).

b) Từ a) Þ BC ^ AH.    (*)

Ta dễ dàng chứng minh được OC ^ (OAB) Þ OC ^ AB.       (3)

Lại có: OH ^ AB    (do OH ^ (ABC)) Þ OH ^ AB.         (4)

Từ (3) và (4) Þ AB ^ (OHC) hay AB ^ HC. (**)

Từ (*) và (**) Þ H là trực tâm của tam giác ABC.

c) Dễ thấy OD, OH là các đường cao của tam giác OBC và OAD.

Áp dụng hệ thức lượng trong tam giác vuông, ta có:

1OD2=1OB2+1OC21OH2=1OA2+1OD2

Do đó 1OH2=1OA2+1OB2+1OC2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Qua A kẻ đường thẳng song song với BC, I là hình chiếu của H trên đường thẳng đó.

Ta có BC // (SAI)

Suy ra d(BC, SA) = d(BC, (SAI))

= d(B, (SAI)) = 32dH,SAI

Gọi K là hình chiếu của H trên SI.

Dễ dàng chứng minh được AI ^ (SHI) Þ AI ^ HK.

Þ HK ^ (SAI) Þ d(H, (SAI)) = HK.

HAI^=180°(60°+60°)=60°

Tam giác AIH vuông tại I:

IH=AH.sin60°=a33.SC,ABC=SC,CH=SCH^=60°.CH2=BC2+BH22.BC.BH.cos60°=7a29CH=a73.

Tam giác SHC vuông tại H: SH=HC.tan60°=a213.

Tam giác SHI vuông tại H:

1HK2=1SH2+1HI2HK=a4212.

dB,SAI=32.HK=a428.

dSA,BC=a428.

           

Lời giải

Đáp án đúng là: A

Media VietJack

Ta có: BCABBCSHBC(SAB).

SC,SAB=SC,SB=CSB^=30°.

Xét tam giác SBC vuông tại B có: tan30°=BCSBSB=3a.

Xét tam giác SAB vuông tại A có: SA=SB2AB2=2a2.

Mà SABCD=AB.BC=a23.

Vậy V=13.SABCD.SA=2a363

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP