CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Qua A kẻ đường thẳng song song với BC, I là hình chiếu của H trên đường thẳng đó.

Ta có BC // (SAI)

Suy ra d(BC, SA) = d(BC, (SAI))

= d(B, (SAI)) = 32dH,SAI

Gọi K là hình chiếu của H trên SI.

Dễ dàng chứng minh được AI ^ (SHI) Þ AI ^ HK.

Þ HK ^ (SAI) Þ d(H, (SAI)) = HK.

HAI^=180°(60°+60°)=60°

Tam giác AIH vuông tại I:

IH=AH.sin60°=a33.SC,ABC=SC,CH=SCH^=60°.CH2=BC2+BH22.BC.BH.cos60°=7a29CH=a73.

Tam giác SHC vuông tại H: SH=HC.tan60°=a213.

Tam giác SHI vuông tại H:

1HK2=1SH2+1HI2HK=a4212.

dB,SAI=32.HK=a428.

dSA,BC=a428.

           

Lời giải

Media VietJack

a) Ta có: OAOBOAOC

OA(OBC)OABC.1

OHBCOHABC.2

Từ (1) và (2) Þ BC ^ (OAH).

b) Từ a) Þ BC ^ AH.    (*)

Ta dễ dàng chứng minh được OC ^ (OAB) Þ OC ^ AB.       (3)

Lại có: OH ^ AB    (do OH ^ (ABC)) Þ OH ^ AB.         (4)

Từ (3) và (4) Þ AB ^ (OHC) hay AB ^ HC. (**)

Từ (*) và (**) Þ H là trực tâm của tam giác ABC.

c) Dễ thấy OD, OH là các đường cao của tam giác OBC và OAD.

Áp dụng hệ thức lượng trong tam giác vuông, ta có:

1OD2=1OB2+1OC21OH2=1OA2+1OD2

Do đó 1OH2=1OA2+1OB2+1OC2.