Câu hỏi:

02/11/2023 2,630

Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC). Vẽ các đường cao BE, DF của tam giác BCD, đường cao DK của tam giác ACD.

a) Chứng minh hai mặt phẳng (ABE) và (DFK) cùng vuông góc với (ADC).

b) Gọi O và H là trực tâm BCD và ∆ACD. Chứng minh OH vuông góc với (ADC).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

a) Từ giả thiết suy ra AB ^ (BDC) Þ AB ^ DC.

Lại có: BE ^ DC.

Þ DC ^ (ABE) hay (ADC) ^ (ABE).   (1)

Ta có: DFBCDFABDFABCDFAC.

Mà DK ^ AC.

Do đó AC ^ (DFK) hay (ADC) ^ (DFK).             (2)

b) Dễ thấy O, H lần lượt là các giao điểm của DF và BE, AE và DK.

Þ (ABE) Ç (DFK) = OH.      (3)

Từ (1), (2) và (3) Þ OH ^ (ADC).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Qua A kẻ đường thẳng song song với BC, I là hình chiếu của H trên đường thẳng đó.

Ta có BC // (SAI)

Suy ra d(BC, SA) = d(BC, (SAI))

= d(B, (SAI)) = 32dH,SAI

Gọi K là hình chiếu của H trên SI.

Dễ dàng chứng minh được AI ^ (SHI) Þ AI ^ HK.

Þ HK ^ (SAI) Þ d(H, (SAI)) = HK.

HAI^=180°(60°+60°)=60°

Tam giác AIH vuông tại I:

IH=AH.sin60°=a33.SC,ABC=SC,CH=SCH^=60°.CH2=BC2+BH22.BC.BH.cos60°=7a29CH=a73.

Tam giác SHC vuông tại H: SH=HC.tan60°=a213.

Tam giác SHI vuông tại H:

1HK2=1SH2+1HI2HK=a4212.

dB,SAI=32.HK=a428.

dSA,BC=a428.

           

Lời giải

Đáp án đúng là: A

Media VietJack

Ta có: BCABBCSHBC(SAB).

SC,SAB=SC,SB=CSB^=30°.

Xét tam giác SBC vuông tại B có: tan30°=BCSBSB=3a.

Xét tam giác SAB vuông tại A có: SA=SB2AB2=2a2.

Mà SABCD=AB.BC=a23.

Vậy V=13.SABCD.SA=2a363

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP