Câu hỏi:
02/11/2023 2,630
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC). Vẽ các đường cao BE, DF của tam giác BCD, đường cao DK của tam giác ACD.
a) Chứng minh hai mặt phẳng (ABE) và (DFK) cùng vuông góc với (ADC).
b) Gọi O và H là trực tâm ∆BCD và ∆ACD. Chứng minh OH vuông góc với (ADC).
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC). Vẽ các đường cao BE, DF của tam giác BCD, đường cao DK của tam giác ACD.
a) Chứng minh hai mặt phẳng (ABE) và (DFK) cùng vuông góc với (ADC).
b) Gọi O và H là trực tâm ∆BCD và ∆ACD. Chứng minh OH vuông góc với (ADC).
Quảng cáo
Trả lời:
a) Từ giả thiết suy ra AB ^ (BDC) Þ AB ^ DC.
Lại có: BE ^ DC.
Þ DC ^ (ABE) hay (ADC) ^ (ABE). (1)
Ta có:
Mà DK ^ AC.
Do đó AC ^ (DFK) hay (ADC) ^ (DFK). (2)
b) Dễ thấy O, H lần lượt là các giao điểm của DF và BE, AE và DK.
Þ (ABE) Ç (DFK) = OH. (3)
Từ (1), (2) và (3) Þ OH ^ (ADC).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Qua A kẻ đường thẳng song song với BC, I là hình chiếu của H trên đường thẳng đó.
Ta có BC // (SAI)
Suy ra d(BC, SA) = d(BC, (SAI))
= d(B, (SAI)) =
Gọi K là hình chiếu của H trên SI.
Dễ dàng chứng minh được AI ^ (SHI) Þ AI ^ HK.
Þ HK ^ (SAI) Þ d(H, (SAI)) = HK.
Tam giác AIH vuông tại I:
Tam giác SHC vuông tại H:
Tam giác SHI vuông tại H:
Lời giải
Đáp án đúng là: A
Ta có:
Xét tam giác SBC vuông tại B có:
Xét tam giác SAB vuông tại A có:
Mà
Vậy
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.