Câu hỏi:

13/07/2024 11,703

Một công ty dự định thuê một số xe lớn cùng loại để chở vừa hết 210 người đi du lịch Mũi Né. Nhưng thực tế, công ty lại thuê toàn bộ xe nhỏ hơn cùng loại. Biết rằng số xe nhỏ phải thuê nhiều hơn số xe lớn là 2 chiếc thì mới chở vừa hết số người trên và mỗi xe nhỏ chở ít hơn mỗi xe lớn là 12 người. Tính số xe nhỏ đã thuê.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số xe nhỏ (chiếc) công ty đã thuê là x x, x>2.

Do đó số xe lớn (chiếc) công ty dự định thuê là x - 2.

Số xe lớn và nhỏ đều chở vừa hết 210 người nên:

Số người trên xe nhỏ là: 210x (người)

Số người trên xe lớn là: 210x2 (người)

Theo đề mỗi xe nhỏ chở ít hơn mỗi xe lớn là 12 người, nên ta có phương trình:

210x2210x=12210x210x2=12xx2210x210x+420=12x224x12x224x420=012x7x+5=0x7=0x+5=0x=7 nhanx=5loai

Vậy công ty đã thuê 7 chiếc xe nhỏ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn, từ A vẽ hai tiếp tuyến AB, AC (B, C là hai tiếp điểm).  1) Chứng minh tứ giác ABOC nội tiếp. (ảnh 1)

1) Xét tứ giác ABOC có:

ABO^=ACO^=90° (AC, AB lần lượt là tiếp tuyến tại B, C của (O))

ABO^+ACO^=180°

Vậy tứ giác ABOC nội tiếp (hai góc đối bù nhau).

2) Xét ΔABF và ΔAEB có:

BAF^ là góc chung

ABF^=AEB^ (cùng bằng 12sđAF của (O))

Do đó ΔABFΔAEBg.g

ABAF=AEAB (tính chất hai tam giác đồng dạng)

AB2=AE.AF.

3) Xét (O) có AB, AC lần lượt là tiếp tuyến tại B, C của (O), OABC=H.

OABC tại H

Xét ABO vuông tại B, đường cao BH, ta có:AB2=AH.AO

Do đó AE.AF=AH.AO =AB2

AEAH=AOAF

Xét AEO và AHF, ta có:

HAF^ là góc chung

AEAH=AOAF

Do đó ΔAEOΔAHFc.g.c 

AEO^=AHF^ (Hai góc tương ứng)

AHF^+FHO^=180° (hai góc kề bù)

Nên AEO^+FHO^=180° hay FEO^+FHO^=180°

Suy ra tứ giác OHFE nội tiếp (Hai góc đối bù nhau)

HFE^+HOE^=180° (Tính chất tứ giác nội tiếp)

Kéo dài AO cắt (O) tại K (O nằm giữa A và K, ta có: KOE^+HOE^=180°)   

KOE^=HFE^ (cùng bù HOE^)

Xét (O), ta có:

EBC^=90° (Góc nội tiếp chắn nửa đường tròn) EBBC

Mặt khác, ta có OABC tại H (cmt) AKBC 

Do đó: EB // AK (cùng vuông góc với BC) KOE^=OEB^ (Hai góc so le trong)

KOE^=CEB^ 

Suy ra HFE^=CEB^ =KOE^

Xét (O), ta có: BFE^=BCE^ (cùng bằng 12sđBE của (O))

Trong ΔEBC vuông tại B, ta có: BEC^+BCE^=90°

Ta có: BFH^=BFE^+HFE^=BCE^+BEC^=90°HFBI tại F

Xét tam giác BHI vuông tại H, đường cao HF, ta có:

IH2=IF.IB (1)

Xét IAF và IBA, ta có:

AIF^ là góc chung

IBA^=IAF^ (IBA^=BEF^ cùng chắn cung BF của (O), BEF^=IAF^là hai góc so le trong của EF // AK)

Vậy ΔIAFΔIBAg.g

IAIB=IFIAIA2=IF.IB (2)

Từ (1) và (2)

=> IH = IA hay i là trung điểm ah.

Lời giải

Gọi R (cm) là bán kính đáy chai (R > 0).

Thể tích nước trong chai (hình trụ có chiều cao 10 cm) là:

V2=πR2.h2=8πR2 cm3

Thể tích không chứa nước trong chai khi lật ngược chai (hình trụ có chiều cao 8 cm) là:

V2=πR2.h2=8πR2 cm3

Thể tích của chai 450π  cm3 là tổng thể tích của nước và phần không chứa nước trong chai khi lật ngược chai lại, nên ta có: V1+V2=450π

10πR2+8πR2=450π18πR2=450π

R2=25

R=5 (do R > 0)

Vậy bán kính của đáy chai là 5 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay