Câu hỏi:

26/06/2024 127

Tròn nói: “Không cần giải, tớ biết ngay tổng và tích hai nghiệm của phương trình x2 – x + 1 = 0 đều bằng 1”.

Ý kiến của em thế nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có ∆ = (–1)2 – 4.1.1 = –3 < 0 nên phương trình vô nghiệm.

Do đó, không tính được tổng và tích các nghiệm của phương trình x2 – x + 1 = 0.

Vậy bạn Tròn nói sai.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sau bài học này, chúng ta sẽ giải quyết được bài toán trên như sau:

Gọi hai kích thước của mảnh vườn hình chữ nhật là x1; x2 (m).

Ta có nửa chu vi và diện tích mảnh vườn hình chữ nhật lần lượt là x1 + x2 (m) và x1x2 (m2).

Theo bài, hàng rào 40 m rào xung quanh mảnh vườn nên nửa chu vi mảnh vườn40 : 2 = 20 (m), do đó x1 + x2 = 20.

Diện tích mảnh vườn hình chữ nhật là 96 m2, do đó x1x2 = 96.

Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 20x + 96 = 0.

Ta có ∆’ = (–10)2 – 1.96 = 4 > 0 và

Do đó phương trình có hai nghiệm là:  

Vậy chiều dài và chiều rộng của mảnh vườn đó lần lượt là 12 (m) và 8 (m) (do chiều dài luôn lớn hơn chiều rộng).

Lời giải

Gọi hai kích thước của bể bơi hình chữ nhật là x1; x2 (m).

Ta có nửa chu vi và diện tích bể bơi hình chữ nhật lần lượt là x1 + x2 (m) và x1x2 (m2).

Theo bài, bể bơi hình chữ nhật có chu vi 74 m nên nửa chu vi bể bơi hình chữ nhật là 74 : 2 = 37 (m), do đó x1 + x2 = 37.

Diện tích bể bơi hình chữ nhật là 300 m2, do đó x1x2 = 300.

Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 37x + 300 = 0.

Ta có ∆ = (–37)2 – 4.1.300 = 169 > 0 và

Suy ra phương trình trên có hai nghiệm phân biệt:

 

Vậy chiều dài và chiều rộng của bể bơi lần lượt là 25 m và 12 m (do chiều dài luôn lớn hơn chiều rộng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay