Câu hỏi:

12/07/2024 3,465

Cho hình vuông ABCD nội tiếp đường tròn (O) như Hình 9.50.

Phép quay thuận chiều 90° tâm O biến các điểm A, B, C, D thành những điểm nào? Phép quay này có giữ nguyên hình vuông ABCD không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phép quay thuận chiều 90° với tâm O biến các điểm A, B, C, D thành các điểm tương ứng là B, C, D, A.

Phép quay này giữ nguyên hình vuông ABCD.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử 8 cabin tạo thành một bát giác đều ABCDEGHK nội tiếp đường tròn (O) (hình vẽ).

Vì bát giác ABCDEGHK nội tiếp đường tròn (O) nên OA = OB = OC = OD = OE = OG = OH = OK.

Vì ABCDEGHK là ngũ giác đều nên AB = BC = CD = DE = EG = GH = HK = KA.

Xét ∆OAB và ∆OBC có:

OA = OB, OB = OC, AB = BC.

Do đó ∆OAB = ∆OBC (c.c.c).

Chứng minh tương tự ta có

∆OAB = ∆OBC = ∆COD = ∆DOE = ∆EOG = ∆GOH = ∆HOK = ∆KOA.

Suy ra

Do đó

Suy ra

Khi đó

Để cabin A di chuyển đến vị trí cao nhất (vị trí của cabin G ban đầu) thì tia OA quay thuận chiều kim đồng hồ đến tia OG, điểm A tạo nên cung AG có số đo 135°.

Vậy để cabin A di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều kim đồng hồ quanh tâm có số đo là 135°.

Lời giải

Vì ABCDEF là lục giác đều nên AB = BC = CD = DE = EF = FA.

Vì lục giác đều ABCDEF nội tiếp đường tròn (O) nên OA = OB = OC = OD = OE = OF.

Xét ∆AOB và ∆BOC có:

OA = OB, OB = OC, AB = BC.

Do đó ∆AOB = ∆BOC (c.c.c)

Tương tự, ta sẽ chứng minh được:

∆AOB = ∆BOC = ∆COD = ∆DOE = ∆EOF = ∆OFA.

Do đó:

Suy ra nên

Xét ∆OAB có OA = OB nên ∆OAB cân tại O, lại có nên ∆OAB là tam giác đều. Suy ra AB = OA = OB = 2 cm và

Tương tự, ta chứng minh được ∆OAF là tam giác đều nên

Khi đó hay

Do đó, vì ABCDEF là lục giác đều nên các góc bằng nhau và bằng 120°.

Vậy độ dài các cạnh của lục giác đều bằng 2 centimét và số đo các góc của lục giác đều bằng 120°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay