Câu hỏi:
12/07/2024 302Cho vòng quay mặt trời gồm tám cabin như Hình 9.55. Hỏi để cabin A di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều quay của kim đồng hồ quanh tâm bao nhiêu độ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Giả sử 8 cabin tạo thành một bát giác đều ABCDEGHK nội tiếp đường tròn (O) (hình vẽ).
Vì bát giác ABCDEGHK nội tiếp đường tròn (O) nên OA = OB = OC = OD = OE = OG = OH = OK.
Vì ABCDEGHK là ngũ giác đều nên AB = BC = CD = DE = EG = GH = HK = KA.
Xét ∆OAB và ∆OBC có:
OA = OB, OB = OC, AB = BC.
Do đó ∆OAB = ∆OBC (c.c.c).
Chứng minh tương tự ta có
∆OAB = ∆OBC = ∆COD = ∆DOE = ∆EOG = ∆GOH = ∆HOK = ∆KOA.
Suy ra
Mà
Do đó
Suy ra
Khi đó
Để cabin A di chuyển đến vị trí cao nhất (vị trí của cabin G ban đầu) thì tia OA quay thuận chiều kim đồng hồ đến tia OG, điểm A tạo nên cung AG có số đo 135°.
Vậy để cabin A di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều kim đồng hồ quanh tâm có số đo là 135°.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thoi ABCD có Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng MBNPDQ là lục giác đều.
Câu 2:
Cho tam giác đều ABC nội tiếp đường tròn (O) như Hình 9.54. Phép quay ngược chiều 60° tâm O biến các điểm A, B, C lần lượt thành các điểm D, E, F. Chứng minh rằng ADBECF là một lục giác đều.
Câu 3:
Câu 4:
Nếu một lục giác đều (đa giác đều 6 cạnh) nội tiếp đường tròn bán kính 2 cm (H.9.40) thì độ dài các cạnh của lục giác đều bằng bao nhiêu centimét? Số đo các góc của lục giác đều bằng bao nhiêu độ?
Câu 5:
Cho một bát giác đều (đa giác đều 8 cạnh) nội tiếp một đường tròn tâm O (H.9.45). Hỏi mỗi góc của bát giác đều có số đo bằng bao nhiêu?
Câu 6:
Cho tam giác đều ABC nội tiếp đường tròn (O) bán kính 2 cm. Tính độ dài các cạnh của tam giác ABC.
về câu hỏi!