Câu hỏi:
12/07/2024 385
Cho hàm số f(x) có đạo hàm f'(x) = x2(x + 1)2(x – 1)(x + 2), ∀x ∈ ℝ. Điểm cực đại của hàm số đã cho là:
A. −1.
B. −2.
C. 2.
D. 1.
Cho hàm số f(x) có đạo hàm f'(x) = x2(x + 1)2(x – 1)(x + 2), ∀x ∈ ℝ. Điểm cực đại của hàm số đã cho là:
A. −1.
B. −2.
C. 2.
D. 1.
Câu hỏi trong đề: Giải SBT Toán 12 CD Bài tập cuối chương 1 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: f'(x) = x2(x + 1)2(x – 1)(x + 2)
f'(x) = 0 khi x = 1, x = −2, x = −1, x = 0.
Ta có bảng biến thiên như sau:
Hàm số đạt cực đại tại x = −2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trong hình ta có chiều rộng phần in chữ trên trang sách là y, chiều dài là x
(0 < y < x, inch).
Chiều dài của trang sách là: x + 2. = x + 3 (inch).
Chiều rộng của trang sách là: y + 2 (inch).
Diện tích của một trang sách là: S = (x + 3)(y + 2) (inch2).
Diện tích phần in chữ trên trang sách là: xy = 24 (inch2) ⇒ y = .
Khi đó, S = (x + 3) = 30 + 2x +
.
Trên khoảng (0; +∞), S' = 0 khi x = 6.
Ta có bảng xét dấu như sau:
Vậy diện tích của một trang sách là nhỏ nhất khi x = 6, khi đó y = 4.
Chiều dài trang sách là 9 inch, chiều rộng là 6 inch.
Vậy kích thước trang sách là 9 inch × 6 inch.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.