Câu hỏi:

12/07/2024 3,325 Lưu

Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau:

y = ;

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

y =

1) Tập xác định: D = ℝ\{−1}.

2) Sự biến thiên

Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:

Ta có: y = 2, y = 2.

Do đó, đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.

           y = +∞, y = −∞.

Do đó, đường thẳng x = −1 là tiệm cận đứng của đồ thị hàm số.

y' = > 0, với x D.

Ta có bảng biến thiên như sau:

Hàm số đồng biến trên các khoảng (−∞; −1) và (1; +∞).

3) Đồ thị

Đồ thị hàm số nhận đường thẳng x = −1 làm tiệm cận đứng, y = 2 làm tiệm cận ngang.

Đồ thị hàm số đi qua các điểm (0; −4); (2; 0); (1; −1); (−2; 8); (5; 1); (−4; 4); .

Có đồ thị hàm số như sau:

Đồ thị hàm số nhận giao điểm của hai đường tiệm cận có tọa độ (−1; 2) làm tâm đối xứng và nhận phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chu vi của cửa sổ là: x + 2y + = 5 (m).

Từ đó suy ra: y = (m).

Diện tích cửa sổ là: S = xy + = = .

Ta có S' = x +  

Trên khoảng (0; +∞), S' = 0 khi x = .

Ta có bảng xét dấu sau:

Để diện tích cửa sổ là lớn nhất thì x = , khi đó y = .

Vậy x = ≈ 1,4 (m), y = ≈ 0,7 (m).

Lời giải

Đặt các điểm trên Hình 32 như trên. Khi đó ta có:

EF = DC – DF – EC = 0,9 − 2x (m).

Lúc này, khi miếng bìa được gập vào thành hình hộp chữ nhật có chiều cao là x (m), chiều rộng đáy là x (m) và chiều dài đáy là 0,9 – 2x (m).

Suy ra V = x2.(0,9 – 2x)   (m3)

Xét hàm số V(x) = x2.(0,9 – 2x).

            V'(x) = −6x2 + 1,8x

            V'(x) = 0 −6x2 + 1,8x = 0 x = 0 hoặc x = 0,3.

Mà điều kiện 0 < x < = 0,45 nên x = 0,3 thỏa mãn điều kiện.

Bảng biến thiên của hàm số V(x) trên khoảng (0; 0,45) như sau:

Căn cứ vào bảng biến thiên, ta có hàm số V(x) đạt giá trị lớn nhất 0,027 tại x = 0,3.

Vậy x = 0,3 m thì thể tích của hình hộp chữ nhật tạo thành là lớn nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP