Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
1) Tập xác định: D = ℝ\{0}.
2) Sự biến thiên
Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
Ta có: y = −∞, y = +∞.
Do đó, hàm số không có đường tiệm cận ngang.
y = −∞, y = +∞.
Do đó, đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số.
= = .
= = = 0.
Do đó, đường thẳng y = là tiệm cận xiên của đồ thị hàm số.
Ta có y' = < 0 với ∀x ∈ D.
Ta có bảng biến thiên như sau:
Hàm số nghịch biến trên các khoảng (−∞; 0) và (0; +∞).
Hàm số không có cực trị.
3) Đồ thị
Đồ thị nhận được thẳng x = 0 làm tiệm cận đứng, y = x làm tiệm cận xiên.
Đồ thị hàm số đi qua các điểm: ; ;(2; 0); ; (−2; 0); .
Có đồ thị hàm số như sau:
Đồ thị hàm số nhận giao điểm của hai đường tiệm cận có tọa độ (0; 0) làm tâm đối xứng và nhận phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một cửa sổ gồm phần dưới là một hình chữ nhật và phần vòm có hình bán nguyệt được mô tả ở Hình 34. Tìm x, y để diện tích của cửa sổ lớn nhất, biết chu vi của cửa sổ là 5m.
Câu 2:
Từ một miếng bìa có độ dài hai cạnh lần lượt là 0,9 m và 1,5 m như Hình 32. Bạn Minh cắt đi phần tô màu xám và gấp lại để được một hình hộp chữ nhật. Gọi V là thể tích hình hộp chữ nhật được tạo thành, V được tính theo x bởi công thức nào? Tìm x để hình hộp tạo thành có thể tích lớn nhất.
Câu 3:
Cho hàm số y = (với a, m ≠ 0) có đồ thị là đường cong như Hình 26.
Giá trị cực đại của hàm số là:
A. 0.
B. −1.
C. 2.
D. 3.
Câu 4:
Một nhà in sử dụng các trang giấy hình chữ nhật để in sách. Sau khi để lề trái, lề phải, lề trên và lề dưới theo số liệu được cho ở Hình 33 thì diện tích phần in chữ trên trang sách là 24 inch2. Tính kích thước của trang sách để diện tích giấy cần sử dụng là ít nhất?
Câu 5:
Đường tiệm cận xiên của đồ thị hàm số y = là đường thẳng:
A. y = −3x + 7.
B. y = 3x + 7.
C. y = 3x – 7.
D. y = −3x – 7.
Câu 6:
Cho hàm số y = .
a) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1. |
Đ |
S |
b) Đồ thị hàm số có tiệm cận ngang là đường thẳng y = 3. |
Đ |
S |
c) Điểm M nằm trên đồ thị hàm số có hoành độ x0 ≠ 1 thì tung độ y0 = −3 − . |
Đ |
S |
d) Tích khoảng cách từ điểm M bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1. |
Đ |
S |
Câu 7:
Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau:
y = x3 – 6x2 + 9x – 2;
về câu hỏi!