Câu hỏi:
22/08/2024 5,476
Cho hàm số y = f(x) có đạo hàm f'(x) xác định trên ℝ và f'(x) có đồ thị như hình vẽ sau:
Tìm các khoảng đồng biến, khoảng nghịch biến và các điểm cực trị của hàm số y = f(x).
Cho hàm số y = f(x) có đạo hàm f'(x) xác định trên ℝ và f'(x) có đồ thị như hình vẽ sau:

Tìm các khoảng đồng biến, khoảng nghịch biến và các điểm cực trị của hàm số y = f(x).
Quảng cáo
Trả lời:
Từ đồ thị hàm số f'(x), ta có bảng biến thiên của hàm số f(x) như sau:

Do đó, hàm số f(x) đồng biến trên các khoảng (−∞; −1) và (2; +∞) và hàm số nghịch biến trên khoảng (−1; 2).
Hàm số đạt cực đại tại x = −1 và đạt cực tiểu tại x = 2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có: \[f\left( x \right) = \frac{{C(x)}}{x}\] = 0,2x + 10 + \(\frac{5}{x}\) với x ≥ 1.
f'(x) = 0,2 – \(\frac{5}{{{x^2}}}\)
f'(x) = 0 ⇔ 0,2 – \(\frac{5}{{{x^2}}}\) = 0 ⇔ x = 5 (do x ≥ 1).
Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \).
Ta có bảng biến thiên như sau:

Hàm số đồng biến trên khoảng (5; +∞), nghịch biến trên khoảng (1; 5).
Hàm số đạt cực đại tại x = 5 với fCT = 12.
Lời giải
a) Khảo sát sự biến thiên của hàm số y = N(t).
1. Tập xác định: [0; +∞).
2. Sự biến thiên
Ta có: N(t) = \(\frac{{20\left( {4 + 3t} \right)}}{{1 + 0,05t}}\)
N'(t) = \(\frac{{56}}{{{{\left( {1 + 0,05t} \right)}^2}}} > 0\) với mọi t ≥ 0.
Hàm số đồng biến trên khoảng (0; +∞).
Hàm số không có cực trị.
Giới hạn tại vô cực: \(\mathop {\lim }\limits_{t \to + \infty } N(t)\) = 1200.
Bảng biến thiên:

b) Số lượng tối đa có thể có của quần thể cá là 1 200 000 con.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.