Câu hỏi:

22/08/2024 4,423

Cho hàm số y = \(\frac{{ax + b}}{{cx + d}}\) có đồ thị như hình vẽ sau:

Cho hàm số y = (ax + b)/(cx + d) có đồ thị như hình vẽ sau:  Mệnh đề nào sau đây là đúng?  A. bc < ad < 0.  B. ad < 0 < bc.  C. 0 < ad < bc.  D. ad < bc < 0. (ảnh 1)

Mệnh đề nào sau đây là đúng?

A. bc < ad < 0.

B. ad < 0 < bc.

C. 0 < ad < bc.

D. ad < bc < 0.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Từ đồ thị hàm số, ta thấy:

Tiệm cận đứng của đồ thị hàm số nằm bên phải trục tung

x = \( - \frac{d}{c}\) > 0 dc < 0.        (1)

Tiệm cận ngang của đồ thị hàm số nằm trên trục hoành

y = \( - \frac{b}{a}\) > 0 ab < 0.        (2)

Với x = 0 thì y = \(\frac{b}{d}\) > 0 hay bd > 0.   (3)

Đồ thị hàm số cho thấy y' = \(\frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}\) < 0 hay ad – bc < 0 ad < bc.

Từ (1), (2) và (3) suy ra bc < 0, ad < 0.

Vậy ad < bc < 0.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một hành lang giữa hai nhà có hình dạng một lăng trụ đứng (xem hình bên). Hai mặt bên ABB'A' và ACC'A' là hai tấm kính hình chữ nhật dài 20 m, rộng 5 m. Gọi x (m) là độ dài của cạnh BC.

Một hành lang giữa hai nhà có hình dạng một lăng trụ đứng (xem hình bên). Hai mặt bên ABB'A' và ACC'A' là hai tấm kính hình chữ nhật dài 20 m, rộng 5 m. Gọi x (m) là độ dài của cạnh BC. (ảnh 1)

a) Tính thể tích V của hình lăng trụ theo x.

b) Tìm x sao cho hình lăng trụ có thể tích lớn nhất và tính giá trị lớn nhất đó.

Xem đáp án » 22/08/2024 15,202

Câu 2:

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \frac{{x + m}}{{x + 2023}}\) đồng biến trên từng khoảng xác định của nó?

A. 2 021.

B. 2 024.

C. 2 023.

D. 2 022.

Xem đáp án » 22/08/2024 11,620

Câu 3:

Cho hàm số y = x3 – 3x2 + 2 có đồ thị (C).

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.

b) Viết phương trình tiếp tuyến ∆ của đồ thị (C) tại tâm đối xứng của nó. Chứng minh rằng ∆ là tiếp tuyến có hệ số góc nhỏ nhất của (C).

c) Tìm các giá trị của tham số m để phương trình x3 – 3x2 – m = 0 có ba nghiệm phân biệt.

Xem đáp án » 22/08/2024 9,266

Câu 4:

Cắt bỏ hình quạt AOB (hình phẳng có nét gạch trong hình dưới đây) từ một mảnh các tông hình tròn bán kính R rồi dán hai bán kính OA và OB của hình quạt tròn còn lại với nhau để được một cái phễu có dạng của một hình nón. Gọi x là góc ở tâm của quạt tròn dùng làm phễu (0 < x < 2π).

Cắt bỏ hình quạt AOB (hình phẳng có nét gạch trong hình dưới đây) từ một mảnh các tông hình tròn bán kính R rồi dán hai bán kính OA và OB (ảnh 1)

a) Hãy biểu diễn bán kính đáy r và đường cao h của hình nón theo P và x.

b) Tính thể tích của hình nón theo R và x.

c) Tìm x để hình nón có thể tích lớn nhất và tính giá trị lớn nhất đó.

Xem đáp án » 22/08/2024 3,320

Câu 5:

Cho hàm số y = \(\frac{1}{3}\)x3 + (m – 1)x2 + (2m – 3)x + \(\frac{2}{3}\).

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2.

b) Tìm m để hàm số có hai điểm cực trị x1 và x2 thỏa mãn \(x_1^2 + x_2^2 = 5\).

c) Tìm m để hàm số đồng biến trên ℝ.

d) Tìm m để hàm số đồng biến trên khoảng (1; +∞).

Xem đáp án » 22/08/2024 2,841

Câu 6:

Cho hàm số y = f(x) có đạo hàm f'(x) = x(x – 1)2(x + 2)4 với mọi x ℝ. Số điểm cực trị của hàm số đã cho là:

A. 0.

B. 1.

C. 2.

D. 3.

Xem đáp án » 22/08/2024 2,332