Câu hỏi:

22/08/2024 1,832

Cho hàm số y = \(\frac{1}{3}\)x3 + (m – 1)x2 + (2m – 3)x + \(\frac{2}{3}\).

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2.

b) Tìm m để hàm số có hai điểm cực trị x1 và x2 thỏa mãn \(x_1^2 + x_2^2 = 5\).

c) Tìm m để hàm số đồng biến trên ℝ.

d) Tìm m để hàm số đồng biến trên khoảng (1; +∞).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Khi m = 2, ta có: y = \(\frac{1}{3}\)x3 + x2 + x + \(\frac{2}{3}\).

                                y' = x2 + 2x + 1 = (x + 1)2 ≥ 0 với mọi x.

Hàm số luôn đồng biến trên ℝ.

Hàm số không có cực trị.

Bảng biến thiên của hàm số như sau:

Cho hàm số y =1/3x^3 + (m – 1)x^2 + (2m – 3)x + 2/3. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2. b) Tìm m để hàm số có hai điểm cực trị  (ảnh 1)

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = - \infty \)

Đồ thị hàm số nhận điểm I\(\left( { - 1;\frac{1}{3}} \right)\) làm tâm đối xứng. Đồ thị hàm số có hình vẽ như sau:

Cho hàm số y =1/3x^3 + (m – 1)x^2 + (2m – 3)x + 2/3. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2. b) Tìm m để hàm số có hai điểm cực trị  (ảnh 2)

b) Ta có: y = \(\frac{1}{3}\)x3 + (m – 1)x2 + (2m – 3)x + \(\frac{2}{3}\)

               y' = x2 + 2(m – 1)x + 2m – 3

               y' = x2 + 2mx – 2x + 2m – 3

               y' = (x2 – 2x – 3) + (2mx + 2m)

               y' = (x + 1)(x – 3) + 2m(x + 1).

               y' = (x + 1) (x – 3 + 2m)

               y' = 0 khi x = −1 hay x = 3 – 2m

Để hàm số có hai nghiệm phân biệt thì x1 ≠ x2 hay 3 – 2m ≠ −1 hay m ≠ 2.   

Ta có: \(x_1^2 + x_2^2 = 5\)

           (−1)2 + (3 – 2m)2 = 5

            (3 – 2m)2 = 4

Suy ra 3 – 2m = 2 hoặc 3 – 2m = −2

m = \(\frac{5}{2}\) hoặc m \(\frac{1}{2}\).

Vậy m \(\left\{ {\frac{5}{2};\frac{1}{2}} \right\}\).

c) Ta có: y' = x2 + 2(m – 1)x + 2m – 3

Để hàm số đồng biến trên ℝ \(\left\{ \begin{array}{l}a = 1 > 0\\\Delta \le 0\end{array} \right.\) \(\left\{ \begin{array}{l}a = 1 > 0\\4{\left( {m - 1} \right)^2} - 4\left( {2m - 3} \right) \le 0\end{array} \right.\)        

m2 – 2m + 1 – 2m + 3 ≤ 0

m2 – 4m + 4 ≤ 0

(m – 2)2 ≤ 0

m = 2.

d) Ta có: y' = x2 + 2(m – 1)x + 2m – 3

             y' = 0 \(\left[ \begin{array}{l}x = - 1\\x = 3 - 2m\end{array} \right.\)

Trường hợp 1: −1 ≤ 3 – 2m m ≤ 2. Ta có bảng biến thiên như sau:

Cho hàm số y =1/3x^3 + (m – 1)x^2 + (2m – 3)x + 2/3. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2. b) Tìm m để hàm số có hai điểm cực trị  (ảnh 3)

Để hàm số đồng biến trên (1; +∞) thì 3 – 2m ≤ 1 m ≥ 1.

Vậy kết hợp điều kiện ta được 1 ≤ m ≤ 2.

Trường hợp 2: 3 – 2m < −1 m > 2. Có bảng biến thiên như sau:

Cho hàm số y =1/3x^3 + (m – 1)x^2 + (2m – 3)x + 2/3. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2. b) Tìm m để hàm số có hai điểm cực trị  (ảnh 4)

Trường hợp này hàm số đồng biến trên (−1; +∞) nên hiển nhiên đồng biến trên (1; +∞).

Vậy trường hợp này m > 2.

Vậy hàm số đồng biến trên khoảng (1; +∞) khi và chỉ khi m ≥ 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một hành lang giữa hai nhà có hình dạng một lăng trụ đứng (xem hình bên). Hai mặt bên ABB'A' và ACC'A' là hai tấm kính hình chữ nhật dài 20 m, rộng 5 m. Gọi x (m) là độ dài của cạnh BC.

Một hành lang giữa hai nhà có hình dạng một lăng trụ đứng (xem hình bên). Hai mặt bên ABB'A' và ACC'A' là hai tấm kính hình chữ nhật dài 20 m, rộng 5 m. Gọi x (m) là độ dài của cạnh BC. (ảnh 1)

a) Tính thể tích V của hình lăng trụ theo x.

b) Tìm x sao cho hình lăng trụ có thể tích lớn nhất và tính giá trị lớn nhất đó.

Xem đáp án » 22/08/2024 10,222

Câu 2:

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \frac{{x + m}}{{x + 2023}}\) đồng biến trên từng khoảng xác định của nó?

A. 2 021.

B. 2 024.

C. 2 023.

D. 2 022.

Xem đáp án » 22/08/2024 8,232

Câu 3:

Cho hàm số y = x3 – 3x2 + 2 có đồ thị (C).

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.

b) Viết phương trình tiếp tuyến ∆ của đồ thị (C) tại tâm đối xứng của nó. Chứng minh rằng ∆ là tiếp tuyến có hệ số góc nhỏ nhất của (C).

c) Tìm các giá trị của tham số m để phương trình x3 – 3x2 – m = 0 có ba nghiệm phân biệt.

Xem đáp án » 22/08/2024 4,745

Câu 4:

Cắt bỏ hình quạt AOB (hình phẳng có nét gạch trong hình dưới đây) từ một mảnh các tông hình tròn bán kính R rồi dán hai bán kính OA và OB của hình quạt tròn còn lại với nhau để được một cái phễu có dạng của một hình nón. Gọi x là góc ở tâm của quạt tròn dùng làm phễu (0 < x < 2π).

Cắt bỏ hình quạt AOB (hình phẳng có nét gạch trong hình dưới đây) từ một mảnh các tông hình tròn bán kính R rồi dán hai bán kính OA và OB (ảnh 1)

a) Hãy biểu diễn bán kính đáy r và đường cao h của hình nón theo P và x.

b) Tính thể tích của hình nón theo R và x.

c) Tìm x để hình nón có thể tích lớn nhất và tính giá trị lớn nhất đó.

Xem đáp án » 22/08/2024 2,600

Câu 5:

Cho hàm số y = \(\frac{{ax + b}}{{cx + d}}\) có đồ thị như hình vẽ sau:

Cho hàm số y = (ax + b)/(cx + d) có đồ thị như hình vẽ sau:  Mệnh đề nào sau đây là đúng?  A. bc < ad < 0.  B. ad < 0 < bc.  C. 0 < ad < bc.  D. ad < bc < 0. (ảnh 1)

Mệnh đề nào sau đây là đúng?

A. bc < ad < 0.

B. ad < 0 < bc.

C. 0 < ad < bc.

D. ad < bc < 0.

Xem đáp án » 22/08/2024 2,439

Câu 6:

Cho hàm số \(y = \frac{{\left( {m + 1} \right)x - 2m + 1}}{{x - 1}}\).

a) Tìm m để tiệm cận ngang của đồ thị hàm số đi qua điểm (1; 2).

b) Khảo sát và vẽ đồ thị (H) của hàm số y = f(x) với m tìm được ở câu a.

c) Từ đồ thị (H) của hàm số y = f(x) ở câu b, vẽ đồ thị của hàm số y = \(\left| {f(x)} \right|\).

Xem đáp án » 22/08/2024 1,382

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store