Câu hỏi:
22/08/2024 4,635Cho hàm số y = x3 – 3x2 + 2 có đồ thị (C).
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
b) Viết phương trình tiếp tuyến ∆ của đồ thị (C) tại tâm đối xứng của nó. Chứng minh rằng ∆ là tiếp tuyến có hệ số góc nhỏ nhất của (C).
c) Tìm các giá trị của tham số m để phương trình x3 – 3x2 – m = 0 có ba nghiệm phân biệt.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Tập xác định: D = ℝ.
Ta có: y' = 3x2 – 6x2
y' = 0 ⇔ 3x2 – 6x2 = 0 ⇔ x = 0 hoặc x = 2.
Hàm số đồng biến trên khoảng (−∞; 0) và (2; +∞).
Hàm số nghịch biến trên khoảng (0; 2).
Hàm số đạt cực đại tại điểm x = 0 và yCĐ = y(0) = 2.
Hàm số đạt cực tiểu tại điểm x = 2 và yCT = y(2) = −2.
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = - \infty \)
Ta có bảng biến thiên như sau:
Đồ thị hàm số đi qua các điểm: (3; 2); (2; −2); (−1; −2); (0; 2).
Đồ thị hàm số có tâm đối xứng là điểm (1; 0).
Đồ thị hàm số như sau:
b) Tâm đối xứng của đồ thị hàm số là điểm I(1; 0).
Ta có: y'(1) = −3.
Vậy phương trình tiếp tuyến của đồ thị hàm số tại tâm đối xứng của nó là:
y = y'(1)(x – 1) + y(1)
= −3(x – 1) + 0
= −3x + 3 (∆).
Ta có: y' = 3x2 – 6x = 3(x2 – 2x + 1) – 3 = 3(x – 1)2 – 3 ≥ −3 với mọi x.
Vậy ∆ là tiếp tuyến có hệ số góc nhỏ nhất của (C).
c) Ta có: x3 – 3x2 – m = 0 ⇔ x3 – 3x2 + 2 = m + 2.
Vậy phương trình x3 – 3x2 – m = 0 là phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng y = m + 2. Suy ra, phương trình đã cho có ba nghiệm phân biệt khi và chỉ khi đường thẳng y = m + 2 cắt đồ thị (C) tại 3 điểm phân biệt, điều này tương đương với −2 < m + 2 < 2 ⇔ −4 < m < 0.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một hành lang giữa hai nhà có hình dạng một lăng trụ đứng (xem hình bên). Hai mặt bên ABB'A' và ACC'A' là hai tấm kính hình chữ nhật dài 20 m, rộng 5 m. Gọi x (m) là độ dài của cạnh BC.
a) Tính thể tích V của hình lăng trụ theo x.
b) Tìm x sao cho hình lăng trụ có thể tích lớn nhất và tính giá trị lớn nhất đó.
Câu 2:
Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \frac{{x + m}}{{x + 2023}}\) đồng biến trên từng khoảng xác định của nó?
A. 2 021.
B. 2 024.
C. 2 023.
D. 2 022.
Câu 3:
Cắt bỏ hình quạt AOB (hình phẳng có nét gạch trong hình dưới đây) từ một mảnh các tông hình tròn bán kính R rồi dán hai bán kính OA và OB của hình quạt tròn còn lại với nhau để được một cái phễu có dạng của một hình nón. Gọi x là góc ở tâm của quạt tròn dùng làm phễu (0 < x < 2π).
a) Hãy biểu diễn bán kính đáy r và đường cao h của hình nón theo P và x.
b) Tính thể tích của hình nón theo R và x.
c) Tìm x để hình nón có thể tích lớn nhất và tính giá trị lớn nhất đó.
Câu 4:
Cho hàm số y = \(\frac{{ax + b}}{{cx + d}}\) có đồ thị như hình vẽ sau:
Mệnh đề nào sau đây là đúng?
A. bc < ad < 0.
B. ad < 0 < bc.
C. 0 < ad < bc.
D. ad < bc < 0.
Câu 5:
Cho hàm số y = \(\frac{1}{3}\)x3 + (m – 1)x2 + (2m – 3)x + \(\frac{2}{3}\).
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2.
b) Tìm m để hàm số có hai điểm cực trị x1 và x2 thỏa mãn \(x_1^2 + x_2^2 = 5\).
c) Tìm m để hàm số đồng biến trên ℝ.
d) Tìm m để hàm số đồng biến trên khoảng (1; +∞).
Câu 6:
Cho hàm số \(y = \frac{{\left( {m + 1} \right)x - 2m + 1}}{{x - 1}}\).
a) Tìm m để tiệm cận ngang của đồ thị hàm số đi qua điểm (1; 2).
b) Khảo sát và vẽ đồ thị (H) của hàm số y = f(x) với m tìm được ở câu a.
c) Từ đồ thị (H) của hàm số y = f(x) ở câu b, vẽ đồ thị của hàm số y = \(\left| {f(x)} \right|\).
về câu hỏi!