Câu hỏi:
24/08/2024 1,976Câu hỏi trong đề: Giải VTH Toán 9 KNTT Bài tập cuối chương 6 có đáp án !!
Quảng cáo
Trả lời:
a) Hai số cần tìm là hai nghiệm của phương trình x2 – 13x + 40 = 0.
Ta có: \(\Delta = {\left( { - 13} \right)^2} - 4.40 = 169 - 160 = 9;\) \(\sqrt \Delta = \sqrt 9 = 3.\)
Suy ra phương trình có hai nghiệm: \({x_1} = \frac{{13 + 3}}{2} = \frac{{16}}{2} = 8;\) \({x_2} = \frac{{13 - 3}}{2} = \frac{{10}}{2} = 5.\)
Vậy hai số cần tìm là 8 và 5.
b) Từ u – v = 4 ta có u = 4 + v.
Thay u = 4 + v vào phương trình uv = 77 ta nhận được phương trình
(4 + v)v = 77, hay v2 + 4v – 77 = 0.
Ta có: \(\Delta ' = {2^2} - \left( { - 77} \right) = 4 + 77 = 81;\) \(\sqrt {\Delta '} = \sqrt {81} = 9.\)
Suy ra phương trình có hai nghiệm \({v_1} = \frac{{ - 2 + 9}}{1} = 7;\) \({v_2} = \frac{{ - 2 - 9}}{1} = - 11.\)
Vậy cặp số (u; v) cần tìm là (−11; 9) hoặc (9; −11).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x (%) là lãi suất năm của hình thức gửi tiết kiệm này. Điều kiện: x > 0.
Sau một năm, số tiền cả vốn lẫn lãi của bác Hương là:
\(100 + 100.\frac{x}{{100}} = 100 + x\) (triệu đồng).
Tổng số tiền bác Hương gửi ở năm thứ hai là: 100 + x + 50 = 150 + x (triệu đồng).
Sau hai năm, số tiền cả vốn lẫn lãi bác Hương nhận được là:
\(150 + x + \left( {150 + x} \right).\frac{x}{{100}}\) (triệu đồng).
Do sau hai năm, bác Hương nhận được số tiền cả vốn lẫn lãi là 176 triệu đồng nên ta có phương trình:
\(150 + x + \left( {150 + x} \right).\frac{x}{{100}} = 176,\) hay \(\frac{{{x^2}}}{{100}} + \frac{5}{2}x - 26 = 0.\)
Giải phương trình này ta được: x = 10 (thỏa mãn điều kiện) hoặc x = −260 (loại).
Vậy lãi suất năm của hình thức gửi tiết kiệm này là 10%.
Lời giải
Đáp án đúng là: D
Ta có:
• \(\frac{1}{2}{.1^2} = \frac{1}{2} \ne 2\) nên điểm (1; 2) không thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)
• \(\frac{1}{2}{.2^2} = 2 \ne 1\) nên điểm (2; 1) không thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)
• \(\frac{1}{2}.{\left( { - 2} \right)^2} = 2 \ne 1\) nên điểm (−2; 1) không thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)
• \(\frac{1}{2}.{\left( { - 1} \right)^2} = \frac{1}{2}\) nên điểm \(\left( { - 1;\frac{1}{2}} \right)\) thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)
Vậy điểm thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}\) là \(\left( { - 1;\frac{1}{2}} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Chuyên đề 8: Hình học (có đáp án)