Câu hỏi trong đề: Giải VTH Toán 9 KNTT Bài tập cuối chương 6 có đáp án !!
Quảng cáo
Trả lời:
a) Hai số cần tìm là hai nghiệm của phương trình x2 – 13x + 40 = 0.
Ta có: \(\Delta = {\left( { - 13} \right)^2} - 4.40 = 169 - 160 = 9;\) \(\sqrt \Delta = \sqrt 9 = 3.\)
Suy ra phương trình có hai nghiệm: \({x_1} = \frac{{13 + 3}}{2} = \frac{{16}}{2} = 8;\) \({x_2} = \frac{{13 - 3}}{2} = \frac{{10}}{2} = 5.\)
Vậy hai số cần tìm là 8 và 5.
b) Từ u – v = 4 ta có u = 4 + v.
Thay u = 4 + v vào phương trình uv = 77 ta nhận được phương trình
(4 + v)v = 77, hay v2 + 4v – 77 = 0.
Ta có: \(\Delta ' = {2^2} - \left( { - 77} \right) = 4 + 77 = 81;\) \(\sqrt {\Delta '} = \sqrt {81} = 9.\)
Suy ra phương trình có hai nghiệm \({v_1} = \frac{{ - 2 + 9}}{1} = 7;\) \({v_2} = \frac{{ - 2 - 9}}{1} = - 11.\)
Vậy cặp số (u; v) cần tìm là (−11; 9) hoặc (9; −11).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x (%) là lãi suất năm của hình thức gửi tiết kiệm này. Điều kiện: x > 0.
Sau một năm, số tiền cả vốn lẫn lãi của bác Hương là:
\(100 + 100.\frac{x}{{100}} = 100 + x\) (triệu đồng).
Tổng số tiền bác Hương gửi ở năm thứ hai là: 100 + x + 50 = 150 + x (triệu đồng).
Sau hai năm, số tiền cả vốn lẫn lãi bác Hương nhận được là:
\(150 + x + \left( {150 + x} \right).\frac{x}{{100}}\) (triệu đồng).
Do sau hai năm, bác Hương nhận được số tiền cả vốn lẫn lãi là 176 triệu đồng nên ta có phương trình:
\(150 + x + \left( {150 + x} \right).\frac{x}{{100}} = 176,\) hay \(\frac{{{x^2}}}{{100}} + \frac{5}{2}x - 26 = 0.\)
Giải phương trình này ta được: x = 10 (thỏa mãn điều kiện) hoặc x = −260 (loại).
Vậy lãi suất năm của hình thức gửi tiết kiệm này là 10%.
Lời giải
Đáp án đúng là: D
Ta có:
• \(\frac{1}{2}{.1^2} = \frac{1}{2} \ne 2\) nên điểm (1; 2) không thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)
• \(\frac{1}{2}{.2^2} = 2 \ne 1\) nên điểm (2; 1) không thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)
• \(\frac{1}{2}.{\left( { - 2} \right)^2} = 2 \ne 1\) nên điểm (−2; 1) không thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)
• \(\frac{1}{2}.{\left( { - 1} \right)^2} = \frac{1}{2}\) nên điểm \(\left( { - 1;\frac{1}{2}} \right)\) thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)
Vậy điểm thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}\) là \(\left( { - 1;\frac{1}{2}} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.