Câu hỏi:

24/08/2024 1,126

Một người đi xe máy từ A đến B với vận tốc và thời gian dự định. Sau khi đi được \(\frac{1}{3}\) quãng đường AB với vận tốc đã dự định, trên quãng đường còn lại người đó đi với vận tốc lớn hơn vận tốc dự định 10 km/giờ. Tính vận tốc và thời gian dự định, biết rằng quãng đường AB dài 120 km và người đó đã đến sớm hơn dự định 24 phút.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đổi 24 phút \( = \frac{2}{5}\) giờ.

Gọi vận tốc dự định là x (km/giờ) (x > 0), thì thời gian dự định là \(\frac{{120}}{x}\) (giờ).

Thời gian xe đi trên \(\frac{1}{3}\) quãng đường đầu là \(\frac{1}{3}.\frac{{120}}{x} = \frac{{40}}{x}\) (giờ).

Vận tốc xe đi trên quãng đường sau là x + 10 (km/giờ).

Thời gian xe đi hết quãng đường còn lại là \(\frac{{80}}{{x + 10}}\) (giờ).

Vì người đó đến B sớm hơn dự định 24 phút nên ta có phương trình:

\(\frac{{40}}{x} + \frac{{80}}{{x + 10}} + \frac{2}{5} = \frac{{120}}{x},\) hay x2 + 10x – 2000 = 0.

Giải phương trình này ta được: x = 40 (thỏa mãn điều kiện); x = 50 (loại).

Vậy vận tốc dự định là 40 km/giờ và thời gian dự định là 3 giờ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x (%) là lãi suất năm của hình thức gửi tiết kiệm này. Điều kiện: x > 0.

Sau một năm, số tiền cả vốn lẫn lãi của bác Hương là:

\(100 + 100.\frac{x}{{100}} = 100 + x\) (triệu đồng).

Tổng số tiền bác Hương gửi ở năm thứ hai là: 100 + x + 50 = 150 + x (triệu đồng).

Sau hai năm, số tiền cả vốn lẫn lãi bác Hương nhận được là:

\(150 + x + \left( {150 + x} \right).\frac{x}{{100}}\) (triệu đồng).

Do sau hai năm, bác Hương nhận được số tiền cả vốn lẫn lãi là 176 triệu đồng nên ta có phương trình:

\(150 + x + \left( {150 + x} \right).\frac{x}{{100}} = 176,\) hay \(\frac{{{x^2}}}{{100}} + \frac{5}{2}x - 26 = 0.\)

Giải phương trình này ta được: x = 10 (thỏa mãn điều kiện) hoặc x = 260 (loại).

Vậy lãi suất năm của hình thức gửi tiết kiệm này là 10%.

Lời giải

Đáp án đúng là: D

Chọn phương án đúng. Điểm nào sau đây thuộc đồ thị của hàm số y = 1/2x^2 A. (1; 2). B. (2; 1). C. (−2; 1). D. (-1, 1/2) (ảnh 1)

Ta có:

• \(\frac{1}{2}{.1^2} = \frac{1}{2} \ne 2\) nên điểm (1; 2) không thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)

• \(\frac{1}{2}{.2^2} = 2 \ne 1\) nên điểm (2; 1) không thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)

• \(\frac{1}{2}.{\left( { - 2} \right)^2} = 2 \ne 1\) nên điểm (−2; 1) không thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)

• \(\frac{1}{2}.{\left( { - 1} \right)^2} = \frac{1}{2}\) nên điểm \(\left( { - 1;\frac{1}{2}} \right)\) thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)

Vậy điểm thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}\) là \(\left( { - 1;\frac{1}{2}} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay