Câu hỏi:
28/08/2024 1,773
Cho hai hàm số \(y = \frac{3}{4}{x^2}\) và \(y = - \frac{3}{4}{x^2}.\)
a) Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ.
b) Nhận xét về tính đối xứng của hai đồ thị qua trục Ox.
c) Xác định m để đường thẳng d: y = (3m – 2)x + 5 cắt parabol \(\left( P \right):y = \frac{3}{4}{x^2}\) tại điểm E có hoành độ bằng –2.
Cho hai hàm số \(y = \frac{3}{4}{x^2}\) và \(y = - \frac{3}{4}{x^2}.\)
a) Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ.
b) Nhận xét về tính đối xứng của hai đồ thị qua trục Ox.
c) Xác định m để đường thẳng d: y = (3m – 2)x + 5 cắt parabol \(\left( P \right):y = \frac{3}{4}{x^2}\) tại điểm E có hoành độ bằng –2.
Quảng cáo
Trả lời:
Ta có bảng giá trị của hai hàm số:
\(x\) |
–2 |
–1 |
0 |
1 |
2 |
\(y = \frac{3}{4}{x^2}\) |
3 |
\(\frac{3}{4}\) |
0 |
\(\frac{3}{4}\) |
3 |
\(y = - \frac{3}{4}{x^2}\) |
–3 |
\( - \frac{3}{4}\) |
0 |
\( - \frac{3}{4}\) |
–3 |
• Trên mặt phẳng Oxy, lấy điểm A(‒2; 3); \[B\left( { - 1;\frac{3}{4}} \right);\] O(0; 0); \[C\left( {1;\,\,\frac{3}{4}} \right);\] D(2; 3); A’(‒2; ‒3); \[B'\left( { - 1; - \frac{3}{4}} \right);\] \[D\left( {1; - \frac{3}{4}} \right);\] D(2; ‒3).
• Đồ thị của hàm số \(y = \frac{3}{4}{x^2}\) là một đường parabol đỉnh O, đi qua 5 điểm A, B, O, C, D và có dạng như hình vẽ.
Đồ thị của hàm số \(y = - \frac{3}{4}{x^2}\) là một đường parabol đỉnh O, đi qua 5 điểm A’, B’, O, C’, D’ và có dạng như hình vẽ.

b) Đồ thị của hai hàm số đối xứng với nhau qua trục Ox.
c) Đường thẳng d cắt parabol (P) tại điểm E có hoành độ –2, nên thay x = –2 vào \(y = \frac{3}{4}{x^2},\) ta được \[y = \frac{3}{4} \cdot {\left( { - 2} \right)^2} = 3.\] Do đó ta có điểm E(–2; 3).
Điểm E(–2; 3) thuộc đường thẳng d, nên thay x = –2 và y = 3 vào hàm số y = (3m – 2)x + 5, ta được:
3 = (3m – 2).(–2) + 5
‒6m + 4 + 5 ‒ 3 = 0
‒6m = ‒6
m = 1.
Vậy m = 1.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét phương trình 5x2 – 7x + 1 = 0 có ∆ = (–7)2 – 4.5.1 = 49 – 20 = 29 > 0.
Do đó phương trình đã cho có hai nghiệm phân biệt.
Theo định lí Viète, ta có: \({x_1} + {x_2} = - \frac{{ - 7}}{5} = \frac{7}{5};\,\,\,{x_1}{x_2} = \frac{1}{5}.\)
Ta có: \(A = \left( {{x_1} - \frac{7}{5}} \right){x_1} + \frac{1}{{25x_2^2}} + x_2^2\)
\( = \left[ {{x_1} - \left( {{x_1} + {x_2}} \right)} \right]{x_1} + {\left( {\frac{1}{5}} \right)^2} \cdot \frac{1}{{x_2^2}} + x_2^2\)
\( = \left[ {{x_1} - {x_1} - {x_2}} \right]{x_1} + {\left( {{x_1}{x_2}} \right)^2} \cdot \frac{1}{{x_2^2}} + x_2^2\)
\( = - {x_1}{x_2} + x_1^2x_2^2 \cdot \frac{1}{{x_2^2}} + x_2^2\)
\( = - {x_1}{x_2} + x_1^2 + x_2^2\)
\( = - {x_1}{x_2} + \left( {x_1^2 + x_2^2 + 2{x_1}{x_2}} \right) - 2{x_1}{x_2}\)
\( = - {x_1}{x_2} + {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\)
\( = {\left( {{x_1} + {x_2}} \right)^2} - 3{x_1}{x_2}\)
\( = {\left( {\frac{7}{5}} \right)^2} - 3 \cdot \frac{1}{5} = \frac{{49}}{{25}} - \frac{3}{5} = \frac{{49}}{{25}} - \frac{{15}}{{25}} = \frac{{34}}{{25}}.\)
Lời giải
Gọi x là số sản phẩm mà người công nhân phải làm theo kế hoạch mỗi ngày (x ∈ ℕ*, x < 120).
Số sản phẩm mỗi ngày mà người đó đã làm theo thực tế là x + 3 (sản phẩm).
Thời gian mà người đó phải hoàn thành theo kế hoạch là \(\frac{{120}}{x}\) (ngày).
Thời gian mà người đó đã hoàn thành theo thực tế là \(\frac{{120}}{{x + 3}}\) (ngày).
Theo bài, người đó đã hoàn thành công việc sớm hơn dự định 2 ngày nên ta có phương trình: \(\frac{{120}}{x} - \frac{{120}}{{x + 3}} = 2.\)
Giải phương trình:
\(\frac{{120}}{x} - \frac{{120}}{{x + 3}} = 2\)
\(\frac{{60}}{x} - \frac{{60}}{{x + 3}} = 1\)
\(\frac{{60\left( {x + 3} \right)}}{{x\left( {x + 3} \right)}} - \frac{{60x}}{{x\left( {x + 3} \right)}} = \frac{{x\left( {x + 3} \right)}}{{x\left( {x + 3} \right)}}\)
60(x + 3) – 60x = x(x + 3)
60x + 180 – 60x = x2 + 3x
x2 + 3x ‒180 = 0
Phương trình trên có a = 1, b = 3, c = ‒180, ∆ = 32 ‒ 4.1.(‒180) = 9 + 720 = 729 > 0.
Do đó, phương trình có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - 3 + \sqrt {729} }}{{2 \cdot 1}} = \frac{{ - 3 + 27}}{2} = \frac{{24}}{2} = 12;\]
\[{x_2} = \frac{{ - 3 - \sqrt {729} }}{{2 \cdot 1}} = \frac{{ - 3 - 27}}{2} = \frac{{ - 30}}{2} = - 15.\]
Ta thấy chỉ có giá trị x1 = 12 thoả mãn điều kiện.
Vậy theo kế hoạch, mỗi ngày công nhân đó phải làm 12 sản phẩm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.