Câu hỏi:

07/09/2024 237

Không dùng MTCT, tính \(\sqrt {{{\left( {\sqrt {11} - 3} \right)}^2}} - \sqrt {{{\left( {2 - \sqrt {11} } \right)}^2}} .\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(3 = \sqrt {{3^2}} = \sqrt 9 < \sqrt {11} \)\(2 = \sqrt {{2^2}} = \sqrt 4 < \sqrt {11} \) nên

\(\sqrt {{{\left( {\sqrt {11} - 3} \right)}^2}} = \left| {\sqrt {11} - 3} \right| = \sqrt {11} - 3\)\(\sqrt {{{\left( {2 - \sqrt {11} } \right)}^2}} = \left| {2 - \sqrt {11} } \right| = \sqrt {11} - 2.\)

Từ đó \(\sqrt {{{\left( {\sqrt {11} - 3} \right)}^2}} - \sqrt {{{\left( {2 - \sqrt {11} } \right)}^2}} = \sqrt {11} - 3 - \sqrt {11} + 2 = - 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} = \left| {2 - \sqrt 5 } \right| = \sqrt 5 - 2\) (vì \(2 - \sqrt 5 < 0\));

b) Vì x < 0 nên \(\left| x \right| = - x\).

Do đó \(3\sqrt {{x^2}} - x + 1 = 3\left| x \right| - x + 1 = - 3x - x + 1 = - 4x + 1.\)

c) \[\sqrt {{x^2} - 4x + 4} = \sqrt {{{\left( {x - 2} \right)}^2}} = \left| {x - 2} \right| = 2 - x\] (do giả thiết x < 2 nên x – 2 < 0).

Lời giải

Ta có \(\sqrt {{{\left( {1 + 2\sqrt 2 } \right)}^2}} = \left| {1 + 2\sqrt 2 } \right| = 1 + 2\sqrt 2 ;\)

\(\sqrt {{{\left( {1 - 2\sqrt 2 } \right)}^2}} = \left| {1 - 2\sqrt 2 } \right| = 1 - 2\sqrt 2 .\)

Do đó \(A = \sqrt {{{\left( {1 + 2\sqrt 2 } \right)}^2}} - \sqrt {{{\left( {1 - 2\sqrt 2 } \right)}^2}} = 1 + 2\sqrt 2 + 1 - 2\sqrt 2 = 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP