Cho căn thức \(\sqrt {{x^2} - 4x + 4} .\)
a) Hãy chứng tỏ căn thức xác định với mọi giá trị của x.
b) Rút gọn căn thức đã cho với x ≥ 2.
c) Chứng tỏ rằng với mọi x ≥ 2, biểu thức \(\sqrt {x - \sqrt {{x^2} - 4x + 4} } \) có giá trị không đổi.
Cho căn thức \(\sqrt {{x^2} - 4x + 4} .\)
a) Hãy chứng tỏ căn thức xác định với mọi giá trị của x.
b) Rút gọn căn thức đã cho với x ≥ 2.
c) Chứng tỏ rằng với mọi x ≥ 2, biểu thức \(\sqrt {x - \sqrt {{x^2} - 4x + 4} } \) có giá trị không đổi.
Câu hỏi trong đề: Giải VTH Toán 9 KNTT Luyện tập chung trang 53 đáp án !!
Quảng cáo
Trả lời:
a) Vì x2 – 4x + 4 = (x – 2)2 ≥ 0 với mọi giá trị của x nên căn thức xác định với mọi giá trị của x.
b) Với x ≥ 2 thì \(\sqrt {{x^2} - 4x + 4} = \sqrt {{{\left( {x - 2} \right)}^2}} = \left| {x - 2} \right| = x - 2.\)
c) Với x ≥ 2 thì \(\sqrt {{x^2} - 4x + 4} = x - 2\) nên
\(\sqrt {x - \sqrt {{x^2} - 4x + 4} } = \sqrt {x - \left( {x - 2} \right)} = \sqrt {x - x + 2} = \sqrt 2 .\)
Vậy căn thức có giá trị không đổi với mọi x ≥ 2.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Với m = 2,5 và E = 281,25 thì \(v = \sqrt {\frac{{2 \cdot 281,25}}{{2,5}}} = \sqrt {225} = 15.\)
Vì vậy vật có khối lượng 2,5 kg và động năng 281,25 J bay với vận tốc là 15 m/s.
Lời giải
a) Từ v2 = 20kl suy ra \(v = \sqrt {20kl} .\)
b) Thay k = 0,8; l = 25 vào công thức \(v = \sqrt {20kl} \) ta được \(v = \sqrt {20.0,8.25} = \sqrt {400} = 20\) (m/s).
Vì 1 giờ = 3 600 giây nên 20 m/s = 20.3 600 = 72 000 m/h = 72 km/h.
Do đó, khi phanh gấp, vận tốc của xe là 72 km/h.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.