Giải VTH Toán 9 KNTT Luyện tập chung trang 53 đáp án
23 người thi tuần này 4.6 126 lượt thi 7 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) \(\sqrt {{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}} + \sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} = \left| {\sqrt 3 - \sqrt 2 } \right| + \left| {1 - \sqrt 2 } \right|\)
Vì \(\sqrt 3 > \sqrt 2 \) và \(1 = \sqrt 1 < \sqrt 2 \) nên \(\left| {\sqrt 3 - \sqrt 2 } \right| = \sqrt 3 - \sqrt 2 \) và \(\left| {1 - \sqrt 2 } \right| = \sqrt 2 - 1.\)
Do đó \(\sqrt {{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}} + \sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} = \sqrt 3 - \sqrt 2 + \sqrt 2 - 1 = \sqrt 3 - 1.\)
b) \(\sqrt {{{\left( {\sqrt 7 - 3} \right)}^2}} + \sqrt {{{\left( {\sqrt 7 + 3} \right)}^2}} = \left| {\sqrt 7 - 3} \right| + \left| {\sqrt 7 + 3} \right|\)
Vì \(\sqrt 7 < \sqrt 9 = 3\) nên \(\left| {\sqrt 7 - 3} \right| = 3 - \sqrt 7 \) và \(\left| {\sqrt 7 + 3} \right| = \sqrt 7 + 3.\)
Do đó \(\sqrt {{{\left( {\sqrt 7 - 3} \right)}^2}} + \sqrt {{{\left( {\sqrt 7 + 3} \right)}^2}} = 3 - \sqrt 7 + \sqrt 7 + 3 = 6.\)
Lời giải
a) \(\sqrt 3 \left( {\sqrt {192} - \sqrt {75} } \right) = \sqrt 3 .\sqrt {192} - \sqrt 3 .\sqrt {75} \)
\( = \sqrt {3.192} - \sqrt {3.75} \)\( = \sqrt {{{3.3.8}^2}} - \sqrt {{{3.3.5}^2}} \)
\( = 3.8 - 3.5 = 24 - 15 = 9.\)
b) \[\frac{{ - 3\sqrt {18} + 5\sqrt {50} - \sqrt {128} }}{{7\sqrt 2 }}\]
\[ = \frac{{ - 3\sqrt {18} }}{{7\sqrt 2 }} + \frac{{5\sqrt {50} }}{{7\sqrt 2 }} + \frac{{ - \sqrt {128} }}{{7\sqrt 2 }}\]
\[ = - \frac{3}{7}\sqrt {\frac{{18}}{2}} + \frac{5}{7}\sqrt {\frac{{50}}{2}} - \frac{1}{7}\sqrt {\frac{{128}}{2}} \]
\[ = - \frac{3}{7}\sqrt 9 + \frac{5}{7}\sqrt {25} - \frac{1}{7}\sqrt {64} \]
\( - \frac{3}{7} \cdot 3 + \frac{5}{7} \cdot 5 - \frac{1}{7} \cdot 8\)
\( = \frac{{ - 9 + 25 - 8}}{7} = \frac{8}{7}.\)
Lời giải
a) \({\left( {1 - \sqrt 2 } \right)^2} = {1^2} - 2\sqrt 2 + {\left( {\sqrt 2 } \right)^2}\)
\( = 1 - 2\sqrt 2 + 2 = 3 - 2\sqrt 2 \).
b) \[{\left( {\sqrt 3 + \sqrt 2 } \right)^2} = {\left( {\sqrt 3 } \right)^2} + 2\sqrt 3 .\sqrt 2 + {\left( {\sqrt 2 } \right)^2}\]
\[ = 3 + 2\sqrt 6 + 2 = 5 + 2\sqrt 6 \].
Lời giải
a) Vì x2 – 4x + 4 = (x – 2)2 ≥ 0 với mọi giá trị của x nên căn thức xác định với mọi giá trị của x.
b) Với x ≥ 2 thì \(\sqrt {{x^2} - 4x + 4} = \sqrt {{{\left( {x - 2} \right)}^2}} = \left| {x - 2} \right| = x - 2.\)
c) Với x ≥ 2 thì \(\sqrt {{x^2} - 4x + 4} = x - 2\) nên
\(\sqrt {x - \sqrt {{x^2} - 4x + 4} } = \sqrt {x - \left( {x - 2} \right)} = \sqrt {x - x + 2} = \sqrt 2 .\)
Vậy căn thức có giá trị không đổi với mọi x ≥ 2.
Lời giải
Với m = 2,5 và E = 281,25 thì \(v = \sqrt {\frac{{2 \cdot 281,25}}{{2,5}}} = \sqrt {225} = 15.\)
Vì vậy vật có khối lượng 2,5 kg và động năng 281,25 J bay với vận tốc là 15 m/s.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
25 Đánh giá
50%
40%
0%
0%
0%