Câu hỏi:

17/09/2024 376

Cho hai điểm O và O' cách nhau một khoảng 5 cm. Mỗi đường tròn sau đây có vị trí tương đối như thế nào đối với đường tròn (O; 3 cm).

a) Đường tròn (O'; 3 cm);

b) Đường tròn (O'; 1 cm);

c) Đường tròn (O'; 8 cm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi R = 3 cm là bán kính đường tròn tâm O, r là bán kính đường tròn tâm O'. Khi đó:

a) Với r = 3 cm, ta có R = r = 3 cm nên R – r = 0 < 5 cm = OO' < R + r = 6 nên (O) và (O') cắt nhau.

b) Với r = 1 cm, ta có OO' = 5 > R + r = 1 + 3 = 4 nên (O) và (O') ngoài nhau.

c) Với r = 8 cm, ta có OO' = 5 = R – r và R > r nên hai đường tròn (O) và (O') không giao nhau (đường tròn (O; 3 cm) tiếp xúc trong đường tròn (O'; 8 cm)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(H.5.37)

Cho hai đường tròn (O) và (O') tiếp xúc ngoài với nhau tại A. Một đường thẳng qua A cắt (O) tại B và cắt (O') tại C. Chứng minh rằng OB // O'C. (ảnh 1)

Do (O) và (O') tiếp xúc ngoài với nhau tại A nên A nằm giữa O và O'.

Do đó \(\widehat {OAB} = \widehat {O'AC}\) (hai góc đối đỉnh).

Lại có, ∆OAB cân tại O (do OA = OB).

Suy ra \(\widehat {OBA} = \widehat {OAB},\)O'AC cân tại O' (do O'A = O'C) suy ra \(\widehat {O'CA} = \widehat {O'AC}.\)

Từ đó suy ra \(\widehat {OBA} = \widehat {O'CA},\) mà hai góc này ở vị trí so le trong nên OB // O'C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP