Cho điểm A di động trên nửa đường tròn tâm O đường kính MN = 20 cm, \(\widehat {MOA}\) = α với 0 ≤ α ≤ π. Lấy điểm B thuộc nửa đường tròn và C, D thuộc đường kính MN được xác định sao cho ABCD là hình chữ nhật. Khi A di động từ trái sang phải, trong các khoảng nào của α thì diện tích của hình chữ nhật ABCD tăng, trong khoảng nào của α thì diện tích hình chữ nhật ABCD giảm?
Cho điểm A di động trên nửa đường tròn tâm O đường kính MN = 20 cm, \(\widehat {MOA}\) = α với 0 ≤ α ≤ π. Lấy điểm B thuộc nửa đường tròn và C, D thuộc đường kính MN được xác định sao cho ABCD là hình chữ nhật. Khi A di động từ trái sang phải, trong các khoảng nào của α thì diện tích của hình chữ nhật ABCD tăng, trong khoảng nào của α thì diện tích hình chữ nhật ABCD giảm?

Quảng cáo
Trả lời:
Xét tam giác ADO vuông tại D, có AD = sin\(\widehat {DOA}\).AO = 10sinα;
DO = cos\(\widehat {DOA}\).AO = 10cosα.
Diện tích hình chữ nhật ABCD là: y = AD.DC = AD.2DO = 200sinαcosα = 100sin2α.
y' = 0 ⇔ α = \(\frac{\pi }{2}\) (0 ≤ α ≤ π).
Ta có bảng biến thiên:

Diện tích ABCD tăng trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\), giảm trên khoảng \(\left( {\frac{\pi }{2};\pi } \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Gọi x (dm) là độ dài cạnh đáy của chiếc hộp hình hộp chữ nhật (x > 0).
Khi đó, chiều cao của chiếc hộp là \(\frac{{10}}{{{x^2}}}\) (dm).
Diện tích toàn phần của chiếc hộp là
S = 2Sđáy + Sxq = 2x2 + 4x.\(\frac{{10}}{{{x^2}}}\) = 2x2 + \(\frac{{40}}{x}\) (dm2).
Ta có: S' = 4x – \(\frac{{40}}{{{x^2}}}\)
S' = 0 ⇔ x = \(\sqrt[3]{{10}}\).
Ta có bảng xét dấu như sau:

Do đó, diện tích toàn phần nhỏ nhất là S = \(6\sqrt[3]{{100}}\) dm2 khi x = \(\sqrt[3]{{10}}\) dm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
