Cho hình thang có đáy nhỏ và cạnh bên bằng nhau và bằng 5. Tìm diện tích lớn nhất của hình thang cân đó.
                                    
                                                                                                                        Cho hình thang có đáy nhỏ và cạnh bên bằng nhau và bằng 5. Tìm diện tích lớn nhất của hình thang cân đó.
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Xét hình thang cân ABCD có AB ∥ CD như hình bên.
Ta có diện tích hình thang cân ABCD là:
S = \(\frac{1}{2}\left( {AB + CD} \right)AE = \left( {5 + x} \right)\sqrt {25 - {x^2}} \) (0 ≤ x < 5).
S' = \(\frac{{ - 2{x^2} - 5x + 25}}{{\sqrt {25 - {x^2}} }}\)
S' = 0 ⇔ x = 2,5.
Ta có bảng biến thiên như sau:

Do đó, \(\mathop {\max }\limits_{\left[ {0;5} \right)} S = S\left( {\frac{5}{2}} \right) = \frac{{75\sqrt 3 }}{4}\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

 Nhắn tin Zalo
 Nhắn tin Zalo