Đồ thị hàm số y = \(\frac{{{x^2} - 2x}}{{x + 1}}\) có hai trục đối xứng là hai đường phân giác của các góc tạo bởi hai đường thẳng:
a) x = 1 và y = x – 3.
b) x = 1 và y = −x + 3.
c) x = −1 và y = x – 3.
d) x = −1 và y = x + 3.
Đồ thị hàm số y = \(\frac{{{x^2} - 2x}}{{x + 1}}\) có hai trục đối xứng là hai đường phân giác của các góc tạo bởi hai đường thẳng:
a) x = 1 và y = x – 3.
b) x = 1 và y = −x + 3.
c) x = −1 và y = x – 3.
d) x = −1 và y = x + 3.
Quảng cáo
Trả lời:
|
a) S |
b) S |
c) Đ |
d) S |
Ta có: y = \(\frac{{{x^2} - 2x}}{{x + 1}}\) = x – 3 + \(\frac{3}{{{{\left( {x - 3} \right)}^2}}}\).
\(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{{x^2} - 2x}}{{x + 1}} = - \infty \); \(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{{x^2} - 2x}}{{x + 1}} = + \infty \).
Đồ thị hàm số có tiệm cận đứng x = −1.
\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x - 3} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{3}{{{{\left( {x - 3} \right)}^2}}} = 0\)
Đồ thị hàm số có tiệm cận xiên x = x – 3.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Gọi x (dm) là độ dài cạnh đáy của chiếc hộp hình hộp chữ nhật (x > 0).
Khi đó, chiều cao của chiếc hộp là \(\frac{{10}}{{{x^2}}}\) (dm).
Diện tích toàn phần của chiếc hộp là
S = 2Sđáy + Sxq = 2x2 + 4x.\(\frac{{10}}{{{x^2}}}\) = 2x2 + \(\frac{{40}}{x}\) (dm2).
Ta có: S' = 4x – \(\frac{{40}}{{{x^2}}}\)
S' = 0 ⇔ x = \(\sqrt[3]{{10}}\).
Ta có bảng xét dấu như sau:

Do đó, diện tích toàn phần nhỏ nhất là S = \(6\sqrt[3]{{100}}\) dm2 khi x = \(\sqrt[3]{{10}}\) dm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
