Câu hỏi:

19/09/2024 2,879 Lưu

Đồ thị của hàm số y = f(x) đi qua điểm (1; 1) và có hệ số góc của tiếp tuyến tại các điểm (x; f(x)) là 1 – 4x. giá trị của f(3) là:

A. −12.

B. −13.

C. −15.

D. −30.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Theo đề ta có: f(1) = 1 và f'(x) = 1 – 4x.

Ta có: \[f\left( 3 \right) - f\left( 1 \right) = \int\limits_1^3 {f'\left( x \right)dx} \]

                             \[ = \int\limits_1^3 {\left( {1 - 4x} \right)dx} \]

                                             \[ = \left. {\left( {x - 2{x^2}} \right)} \right|_1^3 = - 14\].

Suy ra f(3) = −14 + f(1) = −14 + 1 = −13.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \[S = \int\limits_0^4 {\sqrt x dx = \int\limits_0^4 {{x^{\frac{1}{2}}}dx = \left. {\frac{2}{3}\sqrt {{x^3}} } \right|_0^4} }  = \frac{{16}}{3}.\]

           \[{S_1} = \int\limits_0^a {\sqrt x } dx = \left. {\frac{2}{3}\sqrt {{x^3}} } \right|_0^a = \frac{2}{3}\sqrt {{a^3}} \]

  Đường thẳng x = a (0 < a< 4) chia D thành hai phần có diện tích bằng nhau nên

  \[{S_1} = \frac{S}{2} \Leftrightarrow \frac{2}{3}\sqrt {{a^3}}  = \frac{8}{3}\]

             \[ \Leftrightarrow \sqrt {{a^3}}  = 4\]

                    \[ \Leftrightarrow {a^3} = 16 \Leftrightarrow a = 2\sqrt[3]{2}\].

Lời giải

a) Ta có:

Mà v(0) = v0 = 5 nên 3.0 + C = 5 hay C = 5.

Suy ra v(t) = 3t + 5 (m/s), do đó v(5) = 3.5 + 5 = 20 (m/s).

b) Quãng đường xe đi được trong 5 giây đầu kể từ khi tăng tốc là:

\[s = \int\limits_0^5 {v\left( t \right)dt} = \int\limits_0^5 {\left( {3t + 5} \right)dt} = \left. {\left( {\frac{3}{2}{t^2} + 5t} \right)} \right|_0^5\] = 62,5 (m).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP