Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Biết rằng hàm số đồng biến trên \(( - \sqrt 2 ;{\rm{a}})\) và nghịch biến trên \(({\rm{a}};\sqrt 2 ).\)Giá trị của a là bao nhiêu?
Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Biết rằng hàm số đồng biến trên \(( - \sqrt 2 ;{\rm{a}})\) và nghịch biến trên \(({\rm{a}};\sqrt 2 ).\)Giá trị của a là bao nhiêu?

Quảng cáo
Trả lời:
Đáp số: 1.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: 939.
Xét \(f(x) = 200\ln \left( {1 + \frac{{\rm{x}}}{{100}}} \right) + 1000 - {(x - 100)^2} - 200\) với \(x\) là số dương.
\({{\rm{f}}^\prime }({\rm{x}}) = \frac{{200}}{{{\rm{x}} + 100}} - 2({\rm{x}} - 100) = 0 \Leftrightarrow {\rm{x}} = 10\sqrt {101} \approx 100,5.\)
Lập bảng biến thiên từ đó suy ra lợi nhuận tối đa mỗi ngày nhà sản xuất thu được là \({\rm{f}}(100) \approx 938,63.\)
Lời giải
Đáp số: -24. \({{\rm{y}}^\prime } = \frac{{ - 1}}{{{{({\rm{x}} - 1)}^2}}},{\rm{y}}(2) = 2,{{\rm{y}}^\prime }(2) = - 1,{\rm{y}} = {{\rm{y}}^\prime }(2)({\rm{x}} - 2) + {\rm{y}}(2)\)
\( \Rightarrow {\rm{y}} = - 1({\rm{x}} - 2) + 2\) hay \({\rm{y}} = - {\rm{x}} + 4,{\rm{a}} = - 1,\;{\rm{b}} = 4,4{\rm{a}} - 5\;{\rm{b}} = - 24.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.