Câu hỏi:

13/10/2024 22,788

Một nhà sản xuất trung bình bán được 1000 ti vi màn hình phẳng mỗi tuần với giá 14 triệu đồng một chiếc. Một cuộc khảo sát thị trường chỉ ra rằng nếu cứ giảm giá bán 500 nghìn đồng, số lượng ti vi bán ra sẽ tăng thêm khoảng 100 ti vi mỗi tuần. Gọi p (triệu đồng) là giá của mỗi ti vi, x là số ti vi. Khi đó hàm cầu là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

p (triệu đồng) là giá của mỗi ti vi, x là số ti vi.

Theo giả thiết tốc độ thay đổi của x tỉ lệ với tốc độ thay đổi của p nên hàm số p = p(x) là hàm số bậc nhất. Do đó p(x) = ax + b (a ≠ 0)

Theo đề ta có: x1 = 1000 thì p1 = 14; x2 = 1100 thì p1 = 13,5.

Vì đường thẳng p = ax + b đi qua hai điểm (1000; 14) và (1100; 13,5) nên ta có hệ phương trình

\(\left\{ \begin{array}{l}1000a + b = 14\\1100a + b = 13,5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{{200}}\\b = 19\end{array} \right.\).

Vậy \(p = - \frac{1}{{200}}x + 19\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Một người muốn xây một cái bể chứa nước, dạng một khối hộp chữ nhật không nắp có thể tích bằng  288 d m 3 . Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là  500 000  đồng/ m 2 (ảnh 1)

Gọi \(x\) chiều rộng của đáy bể \((x > 0)\).

Khi đó chiều dài của bể là \(2x.\)

Thể tích của bể: \(V = 288\,\,\,d{m^3} = 0,288\,\,\,{m^3}\) ,

mà \(V = x.2x.h \Rightarrow h = \frac{V}{{2{x^2}}} = \frac{{0,288}}{{2{x^2}}} = \frac{{0,144}}{{{x^2}}}\) .

Phần xây dựng của bể (trừ mặt trên của bể) có diện tích:

\(S = 2.hx + 2.h.2x + x.2x = 6hx + 2{x^2} = 6.\frac{{0,144}}{{{x^2}}}.x + 2{x^2} = \frac{{0,864}}{x} + 2{x^2}\).

Xét hàm số \(S(x) = \frac{{0,864}}{x} + 2{x^2}\,\,\,,x > 0.\)

Đạo hàm: \(y' = - \frac{{0,864}}{{{x^2}}} + 4x = \frac{{4{x^3} - 0,864}}{{{x^2}}};\,\,\,y' = 0 \Leftrightarrow 4{x^3} - 0,864 = 0 \Leftrightarrow x = \frac{3}{5} = 0,6\,\,\,m.\)

Bảng biến thiên:

Một người muốn xây một cái bể chứa nước, dạng một khối hộp chữ nhật không nắp có thể tích bằng  288 d m 3 . Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là  500 000  đồng/ m 2 (ảnh 2)

Vậy \({S_{Min}} = \frac{{54}}{{25}}\,\,\,{m^2} \Rightarrow \) Chi phí thấp nhất phải trả: \(\frac{{54}}{{25}}.500\,\,000 = 1\,\,080\,\,000\) đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay