Một người muốn xây một cái bể chứa nước, dạng một khối hộp chữ nhật không nắp có thể tích bằng \[288\,\,\,d{m^3}\]. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là \[500\,000\] đồng/\({m^2}\). Nếu người đó biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất. Hỏi người đó trả chi phí thấp nhất để thuê nhân công xây dựng bể đó là bao nhiêu?
Quảng cáo
Trả lời:
Đáp án đúng là: A

Gọi \(x\) chiều rộng của đáy bể \((x > 0)\).
Khi đó chiều dài của bể là \(2x.\)
Thể tích của bể: \(V = 288\,\,\,d{m^3} = 0,288\,\,\,{m^3}\) ,
mà \(V = x.2x.h \Rightarrow h = \frac{V}{{2{x^2}}} = \frac{{0,288}}{{2{x^2}}} = \frac{{0,144}}{{{x^2}}}\) .
Phần xây dựng của bể (trừ mặt trên của bể) có diện tích:
\(S = 2.hx + 2.h.2x + x.2x = 6hx + 2{x^2} = 6.\frac{{0,144}}{{{x^2}}}.x + 2{x^2} = \frac{{0,864}}{x} + 2{x^2}\).
Xét hàm số \(S(x) = \frac{{0,864}}{x} + 2{x^2}\,\,\,,x > 0.\)
Đạo hàm: \(y' = - \frac{{0,864}}{{{x^2}}} + 4x = \frac{{4{x^3} - 0,864}}{{{x^2}}};\,\,\,y' = 0 \Leftrightarrow 4{x^3} - 0,864 = 0 \Leftrightarrow x = \frac{3}{5} = 0,6\,\,\,m.\)
Bảng biến thiên:

Vậy \({S_{Min}} = \frac{{54}}{{25}}\,\,\,{m^2} \Rightarrow \) Chi phí thấp nhất phải trả: \(\frac{{54}}{{25}}.500\,\,000 = 1\,\,080\,\,000\) đồng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
p (triệu đồng) là giá của mỗi ti vi, x là số ti vi.
Theo giả thiết tốc độ thay đổi của x tỉ lệ với tốc độ thay đổi của p nên hàm số p = p(x) là hàm số bậc nhất. Do đó p(x) = ax + b (a ≠ 0)
Theo đề ta có: x1 = 1000 thì p1 = 14; x2 = 1100 thì p1 = 13,5.
Vì đường thẳng p = ax + b đi qua hai điểm (1000; 14) và (1100; 13,5) nên ta có hệ phương trình
\(\left\{ \begin{array}{l}1000a + b = 14\\1100a + b = 13,5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{{200}}\\b = 19\end{array} \right.\).
Vậy \(p = - \frac{1}{{200}}x + 19\).
Lời giải
Đáp án đúng là: C
Ta có y(3) – y(0) = −6 – 3 = −9.
Vậy quãng đường hạt đi được là 9m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.